2.9. Зависимость внутренней энергии и энтальпии от температуры. Как зависит от температуры внутренняя энергия индивидуального вещества


6. Внутренняя энергия и энтальпия си, их взаимосвязь. Зависимость внутренней энергии и энтальпии вещества от температуры. Интегрирование соответствующих уравнений.

ОСНОВЫ ХИМИЧЕСКОЙ ТЕРМОДИНАМИКИ

  1. Основные понятия химической термодинамики. Система, равновесное состояние и термодинамический процесс. Экстенсивные и интенсивные свойства. Функции состояния и функции процесса. Может ли термодинамическая величина, являющаяся, в общем случае, функцией процесса, приобретать свойства функции состояния? При положительном ответе приведите примеры.

  2. Первое начало термодинамики. Внутренняя энергия. Теплота и работа как формы передачи энергии. Взаимосвязь этих величин в изохорном и изотермическом процессах.

  3. Первый закон термодинамики, формулировки 1-го закона термодинамики. Внутренняя энергия системы. Теплота и работа как формы передачи энергии. 1-ый закон термодинамики применительно к изотермическому и изохорному процессам.

  4. Изобразите схематически на одном графике в координатах параметров состояния Р= f(V) процессы обратимого изотермического и обратимого изобарного расширения идеального двухатомного газа от одного и того же начального состояния до двукратного увеличения объёма. Поясните для какого из указанных выше процессов работа расширения больше?

График адиабаты (жирная линия) на диаграмме для газа.  —давлениегаза;  — объём.

В частном случае, когда работа совершается через изменение объёма, можно определить её следующим способом: пусть газ заключён в цилиндрический сосуд, плотно закрытый легко скользящим поршнем, если газ будет расширяться, то он будет перемещать поршень и при перемещении на отрезок совершать работу[9][10]

где F — сила, с которой газ действует на поршень. Перепишем уравнение:

где s — площадь поршня. Тогда работа будет равна[9][10]

где —давление газа, — малое приращение объёма. Аналогично видно, что уравнение выполняется и для сосудов с произвольной поперечной формой сечения

  1. Изохорная и изобарная молярные теплоемкости. Связь между ними для идеального газа. Зависимость изобарной теплоемкости от температуры для веществ в кристаллическом, жидком и газообразном состоянии.

При нагревании жидких и твердых тел их объем практически не изменяется, и работа расширения оказывается равной нулю. Поэтому все количество теплоты, полученное телом, идет на изменение его внутренней энергии. В отличие от жидкостей и твердых тел, газ в процессе теплопередачи может сильно изменять свой объем и совершать работу. Поэтому теплоемкость газообразного вещества зависит от характера термодинамического процесса. Обычно рассматриваются два значения теплоемкости газов: CV – молярная теплоемкость в изохорном процессе (V = const) и Cp – молярная теплоемкость в изобарном процессе(p = const).

В процессе при постоянном объеме газ работы не совершает: A = 0. Из первого закона термодинамики для 1 моля газа следует 

Изменение ΔU внутренней энергии газа прямо пропорционально изменению ΔT его температуры.

Для процесса при постоянном давлении первый закон термодинамики дает: 

Qp = ΔU + p (V2 – V1) = CV ΔT + pΔV,

где ΔV – изменение объема 1 моля идеального газа при изменении его температуры на ΔT. Отсюда следует: 

Отношение ΔV / ΔT может быть найдено из уравнения состояния идеального газа, записанного для 1 моля: 

где R – универсальная газовая постоянная. При p = const

или 

Таким образом, соотношение, выражающее связь между молярными теплоемкостями Cp и CV, имеет вид (формула Майера): 

При фазовых переходах (из одной кристаллической модификации в другую, из твердого состояния в жидкое и т.п.) теплоемкость меняется скачкообразно, при этом для большинства веществ CV жидкого вещества при температуре плавления несколько больше CVкристаллического (рис. 1.7).

Рис. 1.6. Зависимость теплоемкости кристаллических веществ от температуры

Рис. 1.7. Зависимость теплоемкости HCl от температуры T TФ.П. – температура фазового перехода; TПЛ. – температура плавления; TКИП. – температура кипения

3. Теплоемкость газообразных и жидких веществ обычно растет с повышением температуры (рис. 1.8).

Рис. 1.8. Зависимость теплоемкости газов от температуры: а) если кривая при невысоких^ T имеет большую кривизну, чем при высоких, ее предпочтительнее описывать эмпирическим степенным рядом вида: CP = a + вT + c’/T2; б) кривую б степенным рядом вида: CP = a + вT + cT2

Зависимость теплоемкости веществ от температуры в интервале от 298 до T принято описывать

для неорганических веществ эмпирическим уравнением: CP = a + вT + c’/T2 (1.21)

для органических веществ эмпирическим уравнением: CP = a + вT + cT2 (1.22)

Внутренней энергией системы называется сумма потенциальной энергии взаимодействия всех частиц тела между собой и кинетической энергией их движения, т.е. внутренняя энергия системы складывается из энергии поступательного и вращательного движения молекул, энергии внутримолекулярного колебательного движения атомов и атомных групп, составляющих молекулы, энергии вращения электронов в атомах, энергии, заключающейся в ядрах атомов, энергии межмолекулярного взаимодействия и других видов энергии.

Абсолютная величина внутренней энергии тела неизвестна, но для изучения химических явления важно знать только изменение внутренней энергии при переходе системы из одного состояния в другое.Во многих процессах передача энергии может осуществляться частично в виде теплоты и частично в виде работы.

Таким образом, теплота и работа характеризуют качественно и количественно две различные формы передачи энергии от одного тела к другому; они измеряются в тех же единицах, что и энергия.

Работу или энергию любого вида можно представить как произведение двух факторов: фактора интенсивности на изменение фактора емкости, называемого также фактором экстенсивности (если фактор интенсивности остается постоянным во время процесса).Так, например, обычная работа (механическая), равна произведению приложенной силы на приращение пути:

Если к системе (веществу или совокупности веществ) подводится теплота Q, то согласно закону сохранения энергии она в общем случае расходуется на возрастание внутренней энергии системы  U и на совершение работы А, т.е.

(1)где  U - изменение внутренней энергии системы при переходе из начального состояния UНАЧ в конечное UКОН.

При химических реакциях в основном характеризуется работа против внешнего давления. Она в первом приближении равна произведению давления на изменение объема  V системы:

(2)где  V - изменение объема в процессе.

При изохорном процессе А=0, т.к. изменения объема системы не происходит ( V=0).Следовательно, переходу системы, предположим из состояния 1 в состояние 2 отвечает равенство:

(3)Поэтому, если реакция протекает при V=const, то выделение и поглощение теплоты QV связано с изменением внутренней энергии  U.

Для изобарического процесса  V - разность между суммой объемов продуктов реакций и суммой объемов исходных веществ (Р=const).

(4)Для изобарического процесса тепловой эффект QP будет равен:

(5)(6)

или(7)

Обозначим,(8) - Энтальпия

Энтальпия равна сумме внутренней энергии и произведения объема на давление.

Энтальпия как и внутренняя энергия является экстенсивной функцикй состояния, зависящей от природы вещества, давления и температуры. В пределах температурной области где фазовое состояние системы не меняется, энтальпия является монотонной функцией основных параметров.

т.е.  H - это тепловой эффект реакции Qp при p=const.

Энтальпия является функцией состояния, т.е. её изменение определяется заданными начальными и конечными состояниями системы и не зависит от пути перехода.

dim [H]=[кДж] или [кДж/моль]

Таким образом, при изохорическом процессе тепловой эффект реакции:

Тепловым эффектом (теплотой химической реакции) называют количество теплоты (энергии), выделяемое или поглощаемое системой в ходе реакции при условиях постоянного объема или давления, а получаемые продукты имеют ту же температуру, что и исходное вещество.

 внутренняя энергия идеального газа не зависит от объема и давления, а является лишь функцией температуры, то на основании уравнения (2.7) после его интегрирования получим для внутренней энергии при любой температуре T: UТ = Uо + сV (Т – Тo). (5.2) Энтальпия идеального газа, как и внутренняя энергия, также зависит только от температуры. Так как, по определению, H = U + pV, а для 1 моля газа pV = RT и (ср – сV) =R, то Н = Uо + ср (Т – Тo). (5.3) Изохорный и изобарный потенциалы идеального газа при постоянной температуре определяются интегрированием уравнений (4.28) и (4.34). Для одного моля идеального газа при T = const dF = – pdV = – dV, (5. 4) откуда после интегрирования получаем F = F(Т) – RTlnV. (5.5)

  1. Термохимия. Закон Гесса и его термодинамическое обоснование. Связь тепловых эффектов химической реакции при постоянном давлении и постоянном объеме.

Закон Гесса — основной закон термохимии, который формулируется следующим образом:

  • Тепловой эффект химической реакции, проводимой в изобарно-изотермических или изохорно-изотермических условиях, зависит только от вида и состояния исходных веществ и продуктов реакции и не зависит от пути её протекания.

Иными словами, количество теплоты, выделяющееся или поглощающееся при каком-либо процессе, всегда одно и то же, независимо от того, протекает ли данное химическое превращение в одну или в несколько стадий (при условии, что температура, давление и агрегатные состояния веществ одинаковы).

На рисунке приведено схематическое изображение некоторого обобщенного химического процесса превращения исходных веществ А1, А2… в продукты реакции В1, В2…, который может быть осуществлен различными путями в одну, две или три стадии, каждая из которых сопровождается тепловым эффектом ΔHi. Согласно закону Гесса, тепловые эффекты всех этих реакций связаны следующим соотношением:

studfiles.net

Тепловое движения. Температура. Внутренняя энергия

Б-1

Тепловое движения. Температура. Внутренняя энергия

В окружающем нас мире происходят различные физические явления, которые связаны с нагреванием и охлаждением тел. Такими словами, как «холодный», «тёплый» и «горячий», мы указываем на различную степень нагретости тел, или, как говорят в физике, на различную температуру тел. Температуру тел измеряют с помощью термометра и выражают в градусах Цельсия (°С). Вам уже известно, что диффузия при более высокой температуре происходит быстрее. Это означает, что скорость движения молекул и температура связаны между собой. При повышении температуры скорость движения молекул увеличивается, при понижении — уменьшается.

Температура тела зависит от скорости движения молекул. Поскольку со скоростью движения молекул тела связана его температура, беспорядочное движение частиц называют тепловым движением.

Известно также, что существует два вида механической энергии: кинетическая и потенциальная. Всякое движущееся тело обладает кинетической энергией. Так, например, кинетической энергией обладает летящая птица, движущиеся самолёт, мяч, текущая вода и т. д. Кинетическая энергия тела зависит от его массы и от скорости движения тела. Потенциальная энергия определяется взаимным положением взаимодействующих тел или его отдельных частей. Например, потенциальной энергией обладают поднятый над землёй камень, сжатая или растянутая пружина и т. д. Кинетическая и потенциальная энергия — это два вида механической энергии, они могут превращаться друг в друга.

Кинетическая энергия всех молекул, из которых состоит тело, и потенциальная энергия их взаимодействия составляют внутреннюю энергию тела. Внутренняя энергия зависит от температуры тела, агрегатного состояния вещества и других факторов. Внутренняя энергия тела не зависит ни от механического движения тела, ни от положения этого тела относительно других тел.

Задачи I-А U-В R-ОМ

Б-2

Изменение внутренней энергии путем совершение работы.

Внутренняя энергия — это энергия движения и взаимодействия частиц, из которых состоит тело. При повышении температуры внутренняя энергия тела увеличивается, так как увеличивается средняя скорость движения молекул. Следовательно, возрастает кинетическая энергия молекул этого тела. С понижением температуры, наоборот, внутренняя энергия тела уменьшается. Таким образом, внутренняя энергия тела меняется при изменении скорости движения молекул. Внутреннюю энергию можно изменить путем совершения работы и теплопередачи. Если над телом совершается работа, то внутренняя энергия тела увеличивается; если же это тело совершает работу, то его внутренняя энергия уменьшается,т. е. чтобы изменить внутреннюю энергию тела, нужно изменить его температуру.

Лабор. работа

 

 

Б-3

Изменение внутренней энергии путем теплопередачи

Внутреннюю энергию тел можно изменить путём теплопередачи. Процесс изменения внутренней энергии без совершения работы над телом или самим телом называется теплопередачей. Теплопередача всегда происходит в определённом направлении: от тел с более высокой температурой к телам с более низкой. Когда температуры тел выравняются, теплопередача прекращается. Внутреннюю энергию тела можно изменить двумя способами: совершая механическую работу или теплопередачей. Теплопередача, в свою очередь, может осуществляться: 1) теплопроводностью; 2) конвекцией; 3) излучение

Задачи

 

Б-4

Лабор. работа

 

 

Б-5

Лабор. работа

Б-6

Лабор. работа

 

 

Б-7

1 Парообразования и конденсация. Удельная теплота, парообразования.

Явление превращения жидкости в пар называется парообразованием.

Явление превращения пара в жидкость называется конденсацией.

Конденсация пара сопровождается выделением энергии.

Физическая величина, показывающая, какое количество теплоты необходимо, чтобы обратить жидкость массой 1 кг в пар без изменения температуры, называется удельной теплотой парообразования.

L=Q/m, m= Q/L, Q=(-) Lm (при конденсации)

Где: L-удельная теплота парообразования и конденсации, Q-количество теплоты, m-масса.

Показывает: сколько теплоты выделится при конденсации 1кг ве-ва, сколько энергии надо сообщить 1кг ве-ва для парообразования.

Удельная теплота парообразования показывает, какое количество теплоты необходимо, чтобы превратитъ в пар 1 кг данного вещества при температуре кипения. Единица удельной теплоты парообразования в системе СИ:

[ L ] = 1 Дж/ кг

С ростом давления температура кипения жидкости повышается, а удельная теплота парообразования уменьшается и наоборот.

Удельная теплота парообразования равна количеству тепла, которое нужно для превращения единицы массы жидкости в пар.

Задачи

 

Б-8

Задачи

Б-9

Б-10

Б-11

Задачи

 

Б-12

Б-13

Б-14

Лабор.работа

 

Б-15

Б-16

Задачи

Б-17

Б-18

Задачи

 

Б-1

Тепловое движения. Температура. Внутренняя энергия

В окружающем нас мире происходят различные физические явления, которые связаны с нагреванием и охлаждением тел. Такими словами, как «холодный», «тёплый» и «горячий», мы указываем на различную степень нагретости тел, или, как говорят в физике, на различную температуру тел. Температуру тел измеряют с помощью термометра и выражают в градусах Цельсия (°С). Вам уже известно, что диффузия при более высокой температуре происходит быстрее. Это означает, что скорость движения молекул и температура связаны между собой. При повышении температуры скорость движения молекул увеличивается, при понижении — уменьшается.

Температура тела зависит от скорости движения молекул. Поскольку со скоростью движения молекул тела связана его температура, беспорядочное движение частиц называют тепловым движением.

Известно также, что существует два вида механической энергии: кинетическая и потенциальная. Всякое движущееся тело обладает кинетической энергией. Так, например, кинетической энергией обладает летящая птица, движущиеся самолёт, мяч, текущая вода и т. д. Кинетическая энергия тела зависит от его массы и от скорости движения тела. Потенциальная энергия определяется взаимным положением взаимодействующих тел или его отдельных частей. Например, потенциальной энергией обладают поднятый над землёй камень, сжатая или растянутая пружина и т. д. Кинетическая и потенциальная энергия — это два вида механической энергии, они могут превращаться друг в друга.

Кинетическая энергия всех молекул, из которых состоит тело, и потенциальная энергия их взаимодействия составляют внутреннюю энергию тела. Внутренняя энергия зависит от температуры тела, агрегатного состояния вещества и других факторов. Внутренняя энергия тела не зависит ни от механического движения тела, ни от положения этого тела относительно других тел.

Задачи I-А U-В R-ОМ

Б-2

lektsia.com

Как изменяется внутренняя энергия о температуры

Содержание

  1. Внутренняя энергия тела
  2. Зависимость от температуры

Как изменяется внутренняя энергия о температуры

Внутренняя энергия тела – это часть полной его энергии, обусловленная лишь внутренними процессами и взаимодействиями между частицами вещества. Она складывается из потенциальной и кинетической энергии частиц.

Внутренняя энергия тела

Внутренняя энергия любого тела связана с движением и состоянием частиц (молекул, атомов) вещества. Если известна полная энергия тела, то внутреннюю можно найти, исключив из полной движение всего тела как макроскопического объекта, а также энергию взаимодействия данного тела с потенциальными полями. Также внутренняя энергия содержит в себе энергию колебаний молекул и потенциальную энергию межмолекулярного взаимодействия. Если речь идет об идеальном газе, то основной вклад во внутреннюю энергию дает кинетическая составляющая. Полная внутренняя энергия равна сумме энергий отдельных частиц.Как известно, кинетическая энергия поступательного движения материальной точки, которая моделирует частицу вещества, сильно зависит от скорости ее движения. Также стоит заметить, что и энергия колебательных и вращательных движений зависит от их интенсивности. Вспомните из курса молекулярной физики формулу для внутренней энергии идеального одноатомного газа. Она выражается через сумму кинетических составляющих всех частиц газа, которую можно усреднить. Усреднение по всем частицам приводит к явной зависимости внутренней энергии от температуры тела, а также от количества степеней свободы частиц. В частности, для одноатомного идеального газа, частицы которого имеют лишь три степени свободы поступательного движения, внутренняя энергия оказывается прямо пропорциональной трем вторым произведения постоянной Больцмана и температуры.

Зависимость от температуры

Итак, внутренняя энергия тела фактически отображает кинетическую энергию движения частиц. Для того чтобы понять, какова связь данной энергии с температурой, необходимо определить физический смысл величины температуры. Если нагреть сосуд, заполненный газом и имеющий передвижные стенки, то его объем увеличится. Это говорит о том, что давление внутри увеличилось. Давление газа создается за счет ударов частиц о стенки сосуда. Раз давление увеличилось, значит, увеличилась и сила удара, что говорит о росте скорости движения молекул. Таким образом, увеличение температуры газа привело к увеличению скорости движения молекул. В этом и состоит суть величины температуры. Теперь становится ясно, что увеличение температуры, приводящее к росту скорости движения частиц, влечет за собой увеличение кинетической энергии внутримолекулярного движения, а значит, и увеличение внутренней энергии.

completerepair.ru

2.9. Зависимость внутренней энергии и энтальпии от температуры

В разделе 2.6. уже отмечалось, что по физическому смыслу Cv и СР являются, соответственно, температурными коэффициентами внутренней энергии и энтальпии:

Это означает, что для нахождения температурной зависимости внутренней энергии и энтальпии необходимо провести интегрирование функции, выражающей зависимость теплоемкости от температуры. Такая процедура выполнима, если внутри рассматриваемого интервала температур функция не имеет разрывов, что реализуется при условии неизменности фазового состояния вещества (или системы веществ). В этом случае:

42

[p# 47]

Так как при всех температурах теплоемкость индивидуальных веществ больше нуля (нагревание вещества всегда сопровождается поглощением энергии), то внутри области существования любой фазы как внутренняя энергия, так и энтальпия монотонно возрастают с температурой.

Если же в интервале температур (Т2 - Т]) фазовое состояние вещества изменяется, то уравнения для расчета AU и АН будут включать слагаемые,

учитывающие вклад теплоёмкостной составляющей, и слагаемые, связанные с энергетическими изменениями, имеющими место при фазовых превращениях.

В простейшем случае при наличии одного фазового перехода I рода (например, плавления) изменение энтальпии вычисляется по уравнению:

*

которое включает энтальпию плавления и интегралы, соответствующие изменениям энтальпии кристаллической фазы при нагревании от Tj до Тпл и жидкой фазы от Тпл до Т2.

В общем же случае, когда внутри интервала T2-Ti могут существовать несколько фаз, следует учесть энтальпии всех фазовых превращений и взять интегралы, характеризующие изменение энтальпии при нагревании каждой из фаз, существующих в рассматриваемом температурном интервале:

Нахождение зависимости внутренней энергии от температуры выполняется по аналогичной процедуре с учетом того, что:

[p# 48]

2. Энергетика 43

  • [p# 49]

  • для газов Cv = Cp-R;

  • для конденсированных фаз: Су~ Ср;

  • для фазовых переходов: Аф.пи = Лф.пН~рЛфпУ

На практике интегрирование удобно проводить графически, представив теплоемкость как функцию температуры (рис.6) с учетом разрывов, обусловленных фазовыми переходами, и аномалий в окрестностях фазовых переходов II рода (если, разумеется, такие переходы происходят).

Рис.6. Интегрирование температурной зависимости теплоёмкости Nh5NO3 (р=1атм) с целью нахождения высокотемпературных составляющих энтальпии в интервалах температур (0 - 500 К) и (298,15 - 500 К )

Уравнение, выражающее зависимость энтальпии в интервале 0-500 К, имеет вид:

2. Энергетика

44

[p# 50]

Для интервала температур 298-500 К оно не содержит слагаемых, относящихся к области низких температур:

На рис. 7 приведены температурные зависимости энтальпии воды и свинца.

Рис.7 Температурная зависимость (р=1атм) энтальпии воды (а) и свинца (б)

Обратите внимание, что на шкале ординат указана не абсолютная энтальпия, а разность НТ-Щ. Малое отклонение зависимости H=f(T) от

линейности, наблюдаемое для жидкого свинца, указывает на слабую зависимость теплоемкости от температуры (наклон зависимости H=f(T) равен

теплоемкости). Можно отметить также, что для фазовых переходов справедливо неравенство: АПЛН «ДпарообрН, которое выражено тем сильнее, чем больше

разность между температурами плавления и кипения.

2. Энергетика

45

[p# 46]

studfiles.net

Внутренняя энергия - вещество - Большая Энциклопедия Нефти и Газа, статья, страница 1

Внутренняя энергия - вещество

Cтраница 1

Внутренняя энергия вещества является энергией составляющих вещество молекул. В обычных термодинамических процессах изменения претерпевают лишь кинетическая и потенциальная части внутренней энергии. Первая зависит от скоростей движения молекул ( поступательного, вращательного, колебательного), вторая обусловливается наличием сил взаимодействия ( притяжения или отталкивания) между молекулами и расстоянием между ними.  [1]

Внутренняя энергия вещества представляет собой его полную энергию, которая складывается из кинетической и потенциальной энергий, составляющих вещество атомов и молекул, а также элементарных частиц, образующих атомы и молекулы.  [2]

Внутренняя энергия вещества зависит только от его физического состояния и не зависит от способа или пути, которыми данное вещество приведено в данное состояние. Это следует непосредственно из закона сохранения энергии. В самом деле, обозначим цифрами 1 и 2 два произвольных состояния системы. Пусть V есть затраченная на этот переход энергия. Заставим теперь систему совершить первый переход в прямом - направлении, второй - в обратном. При первом переходе будет затрачена энергия [ /, при втором отдана U, следовательно, внешние тела, окружающие систему, получают энергию U - V, причем никаких изменений в самой системе не происходит. U положительна или отрицательна, безразлично; во всяком случае наше рассуждение привело нас к противоречию с законом сохранения энергии.  [3]

Внутренняя энергия вещества зависит при данных условиях не только от химической природы его, но и от агрегатного состояния, а для кристаллов - и от модификации их.  [4]

Внутренняя энергия вещества представляет собой его полную энергию, которая суммируется из кинетической и потенциальной энергий, составляющих вещество атомов и молекул, а также элементарных частиц, образующих атомы и молекулы. Она включает: 1) энергию поступательного, вращательного и колебательного движения всех частиц; 2) потенциальную энергию взаимодействия ( притяжения и отталкивания) между ними; 3) внутримолекулярную химическую энергию; 4) внутриатомную энергию; 5) внутриядерную энергию; 6) гравитационную энергию; 7) лучистую энергию, заполняющую пространство, занятое телом, и обеспечивающую внутри тела тепловое равновесие между отдельными его участками. Внутренняя энергия не включает потенциальную энергию, обусловленную положением системы в пространство, и кинетическую энергию движения системы как целого.  [5]

Внутренняя энергия вещества превращается в энергию излучения.  [6]

Внутренней энергией вещества называется сумма кинетических энергий всех молекул и потенциальных энергий взаимодействия между молекулами. Чем больше величина внутренней энергии, тем больше тепла содержится в теле и тем выше его температура.  [7]

Увеличение внутренней энергии вещества при испарении без изменения температуры происходит в основном благодаря тому, что при переходе в пар среднее расстояние между молекулами увеличивается. При этом возрастает их потенциальная энергия, так как для того, чтобы раздвинуть молекулы на большие расстояния, нужно затратить работу на преодоление сил притяжения молекул друг к другу.  [8]

Увеличение внутренней энергии вещества при испарении без изменения температуры происходит в основном благодаря тому, что при переходе в пар среднее расстояние между молекулами увеличивается. При этом возрастает их потенциальная энергия, так как для того, чтобы раздвинуть молекулы на большие расстояния, нужно затратить работу на преодоление сил притяжения молекул друг к другу.  [9]

Под внутренней энергией вещества понимают сумму кинетической энергии движения молекул, потенциальной энергии их взаимодействия, а также энергии колебания атомов внутри молекул. При определении состояния тела величина внутренней энергии строго определенна, поэтому ее также относят к параметрам состояния тела.  [10]

При этом внутренняя энергия вещества превращается в энергию излучения ( энергию фотонов или электромагнитных волн), которая, попадая на тела, способные ее поглощать, снова превращается во внутреннюю энергию. Например, при полете космического корабля в межпланетном пространстве его поверхность поглощает излучение Солнца.  [11]

Так как внутренняя энергия веществ является функцией объема, давления и температуры, то, очевидно, и тепловые эффекты реакций зависят от условий, при которых эти реакции протекают. Практически наибольшее значение имеет влияние температуры на тепловые эффекты процессов.  [12]

Показать, что внутренняя энергия вещества с уравнением состояния в форме pTf ( V) не зависит от объема.  [13]

Показать, что внутренняя энергия вещества с уравнением состояния в форме р / ( F) Т не зависит от объема.  [14]

Вследствие изменения при нагреве внутренней энергии вещества практически все физические свойства последнего в большей или меньшей степени зависят от температуры, но для ее измерения выбираются по возможности те из них, которые однозначно меняются с изменением температуры, не подвержены влиянию других факторов и сравнительно легко поддаются измерению. Этим требованиям наиболее полно соответствуют такие свойства рабочих веществ, как объемное расширение, изменение давления в замкнутом объеме, изменение электрического сопротивления, возникновение термоэлектродвижущей силы и интенсивность излучения, положенные в основу устройства приборов для измерения температуры.  [15]

Страницы:      1    2    3

www.ngpedia.ru

Внутренняя энергия

Энергия представляет собой общую меру различных форм движения материи. Соответственно формам движения материи различают и виды энергии – механическую, электрическую, химическую и т.д. Всякая термодинамическая система в любом состоянии обладает некоторым запасом энергии, существование которой было доказано Р.Клаузиусом (1850) и получило название внутренней энергии.

Внутренняя энергия(U) – это энергия всех видов движения микрочастиц, составляющих систему, и энергия их взаимодействия между собой.

Внутренняя энергия складывается из энергии поступательного, вращательного и колебательного движения частиц, энергии межмолекулярного и внутримолекулярного, внутриатомного и внутриядерного взаимодействий и др.

Энергию внутримолекулярного взаимодействия, т.е. энергию взаимодействия атомов в молекуле, часто называют химической энергией. Изменение этой энергии имеет место при химических превращениях.

Для термодинамического анализа нет необходимости знать из каких форм движения материи складывается внутренняя энергия.

Запас внутренней энергии зависит только от состояния системы. Следовательно, внутреннюю энергию можно рассматривать как одну их характеристик этого состояния наравне с такими величинами, как, давление, температура.

Каждому состоянию системы соответствует строго определенное значение каждого из его свойств.

Если гомогенная система в начальном состоянии имеет объем V1, давление P1, температуру T1, внутреннюю энергию U1, удельную электропроводностьæ1и т.д., а в конечном состоянии эти свойства соответственно равны V2, P2, T2, U2, æ2и т.д., то изменение каждого свойства при переходе системы из начального состояния в конечное будет одним и тем же, независимо от того, каким путем переходит система из одного состояния в другое: первым, вторым или третьим (рис. 1.4).

Рис. 1.4 Независимость свойств системы от пути ее перехода

из обычного состояния в другое

Т.е. (U2 - U1)I = (U2 - U1)II = (U2 - U1)III (1.4)

Где цифры I, II, III и т.д. указывают пути процесса. Следовательно, если система из начального состояния (1) в конечное (2) перейдет по одному пути, а из конечного в начале – по другому пути, т.е. совершится круговой процесс (цикл), то изменение каждого свойства системы будет равно нулю.

Таким образом, изменение функции состояния системы не зависит от пути процесса, а зависит лишь от начального и конечного состояний системы. Бесконечно малое изменение свойств системы обозначается обычно знаком дифференциала d. Например, dU– бесконечное малое изменение внутренней энергии и т.д.

Формы обмена энергией

В соответствии с различными формами движения материи и различными видами энергии существуют различные формы обмена энергией (передача энергии) – формы взаимодействия. В термодинамике рассматриваются две формы обмена энергии между системой и окружающей средой. Это работа и теплота.

Работа.Наиболее наглядной формой обмена энергией является механическая работа, соответствующая механической форме движения материи. Она производится при перемещении тела под действием механической силы. В соответствии с другими формами движения материи различают и другие виды работы: электрическую, химическую и т.д. Работа является формой передачи упорядоченного, организованного движения, так как при совершении работы частицы тела движутся организованно в одном направлении. Например, совершение работы при расширении газа. Молекулы газа, находящегося в цилиндре под поршнем, находятся в хаотическом, неупорядоченном движении. Когда же газ начнет перемещать поршень, то есть совершать механическую работу, на беспорядочное движение молекул газа будет накладываться организованное движение: все молекулы получают некоторое смещение в направлении движения поршня. Электрическая работа так же связана с организованным движением в определенном направлении заряженных частиц материи.

Поскольку, работа является мерой передаваемой энергии, количество ее измеряется в тех же единицах, что и энергия.

Теплота. Форму обмена энергией, соответствующую хаотическому движению микрочастиц, составляющих систему, называюттеплообменом, а количество энергии, переданное при теплообмене, называюттеплотой.

Теплообмен не связан с изменением положения тел, составляющих термодинамическую систему, и состоит в непосредственной передаче энергии молекулами одного тела молекулам другого при их контакте.

Представим себе изолированный сосуд (систему) разделенную на две части теплопроводной перегородкой ав (рис. 1.5). Допустим, что в обеих частях сосуда находится газ.

Т1

Рис. 1.5. К понятию о теплоте

В левой половине сосуда температура газа Т1, а в правой Т2. Если Т1> Т2, то средняя кинетическая энергия () молекул газа в левой части сосуда, будет больше средней кинетической энергии () в правой половине сосуда.

В результате непрерывных соударений молекул о перегородку в левой половине сосуда часть энергии их передается молекулам перегородки. Молекулы же газа, находящегося в правой половине сосуда, сталкиваясь с перегородкой, приобретут какую-то часть энергии от ее молекул.

В результате этих столкновений кинетическая энергия молекул в левой половине сосуда будет уменьшаться, а в правой – увеличиваться; температуры Т1и Т2будут выравниваться.

Поскольку теплота является метой энергии, ее количество измеряется в тех же единицах, что энергия. Таким образом, теплообмен и работа являются формами обмена энергией, а количество теплоты и количество работы - мерами передаваемой энергии. Различие между ними состоит в том, что теплота – это форма передачи микрофизического, неупорядоченного движения частиц (и, соответственно, энергии этого движения), а работа представляет собой форму передачи энергии упорядоченного, организованного движения материи.

Иногда говорят: теплота (или работа) подводится или отводится от системы, при этом следует понимать, что подводиться и отводится не теплота и работа, а энергия, поэтому следует не употреблять такого рода выражений как «запас теплоты» или «теплота содержится».

Являясь формами обмена энергией (формами взаимодействия) системы с окружающей средой, теплота и работа не могут быть связаны с каким-либо определенным состоянием системы, не могут являться ее свойствами, а, следовательно, и функциями ее состояния. Это означает, что если система проходит из начального состояния (1) в конечное (2) различными путями, то теплота и работа будут иметь разные значения для разных путей перехода (рис. 1.6)

Рис. 1. 6

Конечное количество теплоты и работы обозначают Q и A, а бесконечно малые значения соответственно через δQ и δA. Величины δQ и δA в отличие от dU не являются полным дифференциалом, т.к. Q и A не являются функциями состояния.

Когда же путь процесса буде предопределен, работа и теплота приобретут свойства функций состояния системы, т.е. их численные значения будут определяться только начальным и конечным состояниями системы.

studfiles.net

Зависимость внутренней энергии от давления и температуры

    Зависимость внутренней энергии от давления и температуры [c.48]

    Зависимость внутренней энергии от давления и температуры для газа в идеальном состоянии [c.52]

    Найти изменение внутренней энергии 2 м воздуха, если температура его понижается от 250 до 70 °С. Зависимость теплоемкости от температуры принять линейной. Начальное давление воздуха 0,6 МПа. [c.275]

    По зависимости давления насыщенного пара от температуры и плотности данного вещества А с молекулярной массой М в твердом и жидком состояниях (dj, и в кг/м ) в тройной точке (тр.т) 1) постройте график зависимости Ig Р от 1/Т 2) определите по графику координаты тройной точки 3) рассчитайте среднюю теплоту испарения и возгонки 4) постройте график зависимости давления насыщенного пара от температуры 5) определите теплоту плавления вещества при температуре тройной точки 6) вычислите dT/dP для процесса плавления при температуре тройной точки 7) вычислите температуру плавления вещества при давлении Р Па 8) вычислите изменение энтропии, энергий Гиббса и Гельмгольца, энтальпии и внутренней энергии для процесса возгонки 1 моль вещества в тройной точке 9) определите число термодинамических степеней свободы при следующих значениях температуры и давления а) Ттр.т, Ртр т б) Т .т Р = 1 атм в) [c.166]

    Использовать свойства частных производных для вывода уравнений зависимости внутренней энергии от температуры при постоянном давлении [уравнение (3.2.11)] и зависимости энтальпии от температуры при постоянном объеме [уравнение (3.2.13)]. [c.86]

    Найти зависимость истинной мольной темплоемкости от абсолютной температуры и количества теплоты, Которое пойдет на нагревание 220 г СОа от О до 100° С при постоянном давлении. Какая часть этого тепла идет на повышение внутренней энергии газа  [c.18]

    X. т. использует понятия о типах термодинамич. систем (см. Гетерогенная система. Гомогенная система. Закрытая система, Изолированная система, Открытая система), параметрах состояния (см. Давление, Температура, Химический потенциал), термодинамич. ф-циях и термодинамических потенциалах (см., напр., Внутренняя энергия. Энтропия). В основе Х.т. лежат законы (начала) общей термодинамики. Первое начало термодинамики - закон сохранения энергаи дая термодинамич. системы, согласно к-рому работа может совершаться только за счет теплоты или к.-л. др. формы энергии. Оно является основой термохимии, изучения теплоемкостей в-в, тепловых эффектов реакций и физ.-хим процессов. Гесса закон позволяет определять тепловые эффекты расчетным путем, если известны теплоты образования каждого из в-в, участвующих в р-ции, или теплоты сгорания (для орг. соед.). Совр. термодинамич. справочники содержат данные о теплотах образования или теплотах сгорания неск. тысяч в-в, гто позволяет рассчитывать тепловые эффекты десятков тысяч хим. р-ций. Первое начало лежит в основе Кирхгофа уравнения, к-рое выражает зависимость теплового эффекта р-ции или физ.-хим. процесса ст т-ры и дает возможность рассчитать тепловой эффект процесса при любой т-ре, если известны теплоемкости в-в, участвующих в р-ции, и тепловой эффект при к.-л. одной т-ре. [c.236]

    Обязательной частью любого процесса переработки природных газов является контроль массо- и энергообмена, происходящих в системе. Поэтому проеК тирование этих процессов включает в себя оценку изменений энтальпии Я, энтропии 5 и внутренней энергии 11 системы. Так как величина этих термодинамических характеристик определяется только начальным и конечным состоянием системы и не зависит от пути изменения его, то при расчетах в основном приходится иметь дело с изменениями этих характеристик, а не с их абсолютными значениями. В большинстве источников приводятся значения и, 8 ж Н, отнесенные к определенным, так называемым начальным условиям. Начальными условиями является такое сочетание давления, температуры и фазового состояния, при котором Н = О ж 8 = О для насыщенной жидкой фазы. Например, в большинстве справочных данных по водяному пару начальными условиями являются температура — 0° С, давление — 1 кгс/см , фазовое состояние — насыщенная жидкость. Изменения энтальпии АН и энтропии Аб" можно определить с помощью табличных данных графиков зависимости Н п 8 от. р, V п Т обобщенных соотношений для газов расчетов, основанных на рУГ-данных, и уравнении состояния. Типичные табличные данные представлены в приложении. [c.103]

    Примем гипотезу локального равновесия в пределах каждой из фаз, что позволяет ввести для каждой из них свою температуру Г,-, внутреннюю энергию u , энтропию энтальпию г,., давление P и другие термодинамические функции. Многокомпонентность фаз обусловливает зависимость термодинамических функций каждой из фаз не только от ее температуры, давления, плотности, но и от состава фазы , (с, = ( /Р[c.36]

    Термодинамические характеристики — определенные функции переменных, в качестве которых выбраны температура, давление, объем, число молей, тепловой эффект и работа. Функциональная зависимость термодинамических характеристик определяется на основе законов термодинамики. К числу основных термодинамических характеристик относят внутреннюю энергию и, энтальпию Н, энергию Гельмгольца Е, энергию Гиббса 6, энтропию 3, теплоемкость Ср, а также их изменения в процессах. [c.292]

    Отсюда видно, что теплоемкости системы Ср и Су представляют собою частные производные от энтальпии и внутренней энергии. Они не имеют прямого отношения к теплоте и характеризуют зависимость энтальпии и внутренней энергии от температуры при условии постоянства давления или объема соответственно. Теплоемкости в химической термодинамике имеют большое значение, так как с помощью уравнений (12) и (13) они дают возможность найти энтальпию и внутреннюю энергию системы при любой температуре. [c.11]

    Строго говоря, внутренняя энергия и энтальпия — функции давления, и приводимые в таблицах термодинамических величин значения АЯ образования соединений из простых веществ относятся не только к определенной температуре, но и к определенному давлению, а именно 1 атм, и обычно обозначаются АЯ°. Однако при не слишком больших давлениях эта зависимость незначительна. Давление, естественно, оказывает наибольшее влияние на свойства газов. Однако пока газ можно рассматривать как идеальный, его внутренняя энергия от давления не зависит, а дополнительное слагаемое рУ, входящее в выражение (9.3), определяющее величину энтальпии, равно RT и также не изменяется с давлением. Поэтому в дальнейшем не будет приниматься во внимание зависимость тепловых эффектов химических реакций от давления. [c.215]

    Внутренняя энергия и энтальпия идеального газа не зависят от давления. Для реального газа повышение давления, вызывающее сближение молекул, приводит к уменьшению потенциальной составляющей внутренней энергии. Зависимость энтальпии и внутренней энергии при постоянной температуре можно представить с помощью уравнения Ван-дер-Ваальса. Это уравнение (1.26) для 1 моль реального газа можно переписать в виде  [c.54]

    Состояние изолированной равновесной системы остается неизменным во времени, следовательно, и ее внутренняя энергия, будучи зависимой лишь от физического состояния системы (температуры, давления, агрегатного состояния и т. д.), сохраняет постоянное значение во времени. Иными словами, определенному физическому состоянию системы соответствует только единственное значение внутренней энергии. [c.49]

    Для вещества А, находящегося в состоянии идеального газа при температурах Тх, Та и Т, и при давлении 1,0133-10 Па, определить 1) составляющие суммы состояний поступательную, вращательную, колебательную 2) сумму состояний 3) составляющие внутренней энергии поступательную, вращательную и колебательную 4) внутреннюю энергию и — (Уо 5) составляющие теплоемкости поступательную, вращательную и колебательную 6) теплоемкость 7) вывести уравнение зависимости = / (Т) в виде ряда Ср = а + ЬТ+ +сТ , справедливое в интервале температур от Т1 до Т3. Для решения используйте три значения теплоемкости при трех температурах  [c.122]

    Для оценки величин % (0) и Vf предложен ряд методов. Приближенно 1/2 Л/х(0) можно приравнять изменению внутренней энергии при испарении со знаком минус. Согласно Гильдебранду, зависимость величины АХ/ сп от температуры и объема жидкости (последний изменяется при изменении температуры и внешнего давления) можно представить функцией вида а (7 )/У", причем для многих веществ значение п близко к единице. Положив п I, запишем [c.365]

    При аварии в случае быстрого выброса сжатых газов или перегретых жидкостей образуется первичное облако химически опасных веществ. Часть такой жидкости вскипает мгновенно, испаряется и переходит в атмосферу, а температура оставшейся части упадет до точки кипения при атмосферном давлении. Процесс испарения протекает весьма интенсивно за счет внутренней энергии перегрева. Доля испарившейся жидкости в расчетах учитывается коэффициентом К, (см. зависимость 2.11). [c.37]

    Для определения зависимости энтальпии, энтропии и внутренней энергии от гидростатического давления могут быть использованы экспериментальные зависимости р—V—Т, приведенные выше, и зависимости теплоемкости при постоянном давлении (например, атмосферном) от температуры. [c.84]

    В зависимости от условий, в которых производят нагрев, различают несколько видов теплоемкостей, из которых мы остановимся здесь на двух главнейших. В случае нагревания вещества при постоянном объеме теплоемкость v, которой оно обладает, называется изохорной теплоемкостью (ее называют также теплоемкостью при постоянном объеме). В этом случае вся сообщаемая веществу теплота увеличивает его внутреннюю энергию, так как при нагревании без изменения объема не производится внешней работы. Теплоемкость Ср, которой обладает тело, нагреваемое при постоянном давлении, называется изобарной теплоемкостью (ее называют также теплоемкостью при постоянном давлении). В этих условиях нагрева, наряду с расходом теплоты на увеличение внутренней энергии вещества, производится еще и работа против внешнего давления вследствие расширения вещества при повышении температуры. Эта работа требует затраты дополнительного количества теплоты, поэтому изобарная теплоемкость всегда больше тохорной. [c.102]

    В практике при расчетах важно знать не величину внутренней энергии, а ее изменения в зависимости от давления и температуры  [c.42]

    Ур. (VII, 51) и (VII, 54) показывают, что, в отличие от внутренней энергии и энтальпии, 5, Р и С идеального газа зависят от давления. Зависимость этих величии от объема, занимаемого одним молем газа при постоянной температуре, показана на рис. 78. [c.228]

    Однако полные диаграммы, построенные в координатах Г—р—с , не совсем удобны, так как при изучении термодинамики однокомпонентных систем и уравнений состояния принято пользоваться не концентрациями с (моль/литр), а мольными объемами (литр/моль). Если по одной из осей вместо с откладывать соответствующие значения V, то диаграмма сразу дает зависимость между температурой, давлением и мольным объемом, т. е. именно теми величинами, по изменениям которых вычисляются изменения внутренней энергии, энтропии, свободной энергии и прочих функций индивидуальных веществ. [c.150]

    Внутренняя энергия системы слагается из кинетической и потенциальной энергии частиц, из которых она состоит. Кинетическая энергия частиц зависит от их массы и абсолютной температуры потенциальная—от их природы и удельного (молярного) объема системы. От последнего, в частности, зависят расстояния между частицами и, следовательно, энергия взаимодействия частиц. Поэтому внутренняя энергия зависит лишь от состояния (часто говорят—является функцией состояния) системы, т. е. от ее химического состава, температуры и объема (или внешнего давления), а ее изменение в каком-нибудь процессе Ai/ полностью определяется начальным и конечным состояниями системы и не зависит от способа проведения процесса. Напротив, теплота Q и работа А процесса при одном и том же изменении внутренней энергии могут быть различными в зависимости от способа прове- [c.27]

    Общепринято называть термическим уравнением состояния уравнение, связывающее давлеппе с плотностью и температурой, а калорическим — уравпенне, определяющее зависимость внутренней энергии (или энтальпии) от температуры и давления. В большинстве случаев течения газа сопровождаются разного рода неравновесными процессами, для описания которых уравнения газовой динамики дополняются соответствующими кинетическими или релаксационными уравнениями. Кроме того, в уравнения вводятся дополпительпые члены, учитывающие воздействия неравновесных процессов на газодинамические параметры. Неравновесные процессы весьма разнообразны. Наиболее часто приходится иметь дело с возбуждением колебательных степеней свободы, диссоциацией и рекомбинацией, движением жидких или твердых частиц в условиях конденсации или испарения. [c.9]

    Наиболее простое и наглядное выражение для коэффициента вязкости газов и его температурной зависимости дает элементарная молекулярно-кинетическая теория. По этой теории газ представляет собой совокупность молекул, разделенных достаточно большими промежутками по сравнению с размерами самих молекул. Молекулы беспорядочно движутся, сталкиваясь друг с другом, пробегая при этом некоторый путь между двумя последовательными столкновениями. Силы взаимодействия между молекулами, кроме моментов соударения, настолько малы, что ими обычно пренебрегают. Внутренняя энергия газа рассматривается как суммарная кинетическая энергия молекул газа, температура определяется средней кинетической энергией молекулы, давление газа является результатом ударов молекул о стенку сосуда. [c.112]

    Схема извлечения Сз с улавливанием абсорбента и использованием холода обратных потоков, но без использования холода внутренних потоков приведена на рис. 115. Зависимость расхода энергии от давления и температуры абсорбции (для данной схемы) приведена на рис. 116 (для абсорбента Сз) и на рис. 117 (для абсорбента С4). Из анализа рис. 116 и 117 следует, что схема с улавливанием абсорбента имеет энергетические преимуш ества при применении абсорбента Сз и что с повышением давления общие энергозатраты снижаются. [c.178]

    В случае нагревания газа при постоянном давлении р газ расширяется и за счет сообщаемого ему тепла не только увеличивается запас внутренней энергии, но и совершается работа А, направленная на преодоление внешних сил. Из этого следует, что теплоемкость Ср больше, чем Ст,, на величину той работы, которую совершает один моль газа при расширении в результате повышения его температуры на 1 град при постоянном давлении р. Между этими теплоемкостями существует следующая зависимость  [c.100]

    В следующих выпусках Справочника будут приведены данные, характеризующие структуру молекул углеводородов (расстояния между атомами, углы между связями, моменты инерции молекул и частоты 1) олебаний в молекулах углеводородов), познанные, главным образом, в результате изучения Раман-и инфракрасных спектров углеводородов. Эти данные используются далее для подсчёта таблиц зависимости от температуры свободных энергий, теплосодержаний, внутренних энергий углеводородов в стандартных состояниях. Далее будут приведены таблицы свободных энергий образования углеводородов из элементов при 25° С, охватывающие более широкий круг соединений, в которых будут также приведены величины, необходимые для приближённого подсчёта равновесий реакций между углеводородами. После данных о соотношениях между температурой, давлением и объёмом углеводородов будут приведены таблицы летучестей, коэфициентов активности, джоуль-томсоновских коэфициен-тов, теплосодержаний, энтропий и теплот испарения углеводородов под давлением. [c.109]

    Далее, в зависимости от условий, в которых осуществляется нагрев, различают теплоемкость при постоянном объеме Су и теплоемкость при постоянном давлении Ср. В первом случае вся сообщаемая веществу теплота расходуется только на повышение его внутренней энергии. Во втором же случае, наряду с расходом теплоты на повышение внутренней энергии вещества, производится и работа против внешнего давления вследствие расширения вещества при повышении температуры. Эта работа требует затраты дополнительного количества теплоты, поэтому Ср больше Су. [c.139]

    Физико-химический анализ применим только для изучения систем, находящихся в равновесии. Вообще равновесие — понятие условное и неравнозначное абсолютному покою, который в природе не существует. В зависимости от принятой условности могут существовать и разные состояния равновесия. Протекание различных физико-химических процессов экспериментально наиболее удобно контролировать с помощью термодинамики, изучая превращение при этих процессах теплоты в другие виды энергии, и наоборот. Метод физико-химического анализа применяется для исследования физико-химических систем, пришедших в состояние термодинамического равновесия. Параметрами термодинамического состояния систем служат температура, давление, концентрация, внутренняя энергия, энтропия, энтальпия, изобарный и изохорный термодинамические потенциалы и др. [c.16]

    В настоящей статье давление и температура рассматриваются как независимые переменные. Для состояний, соответствующих значениям приведенных давлений и температур приблизительно от 0,8 до 1,3, часто бывает ныгодно принимать объем и температуру за независимые переменные. При этих условиях данные, касающиеся изменения внутренней энергии в зависимости от объема, могут быть получепы пз производной давления по температуре при постоянном объеме. Это соотношение определяется следующим равенством  [c.55]

    Так как давление во время изменения объема при постоянной температуре является зависимой переменной, то это уравнение предполагает также, что энергия не зависит от давления. В общем, как мы уже видели в гл. III, энергия газа зависит от двух независимых переменных, например от объема и температуры. Из простого кинетического представления об идеальном газе следует, что поскольку силы, действующие между молекулами, отсутствуют, одно изменение объема не может вызвать изменения внутренней энергии. [c.210]

    В зависимости от степени порядка в устойчивой системе, от характера движения частиц в ней говорят о различном агрегатном состоянии вещества. Для многих веществ существует область температур и давлений, при которых устойчивым состоянием вещества является газообразное (парообразное) состояние. В газообразном состоянии вещества энтропийный фактор и внутренняя энергия системы столь велики, что притяжение между частицами незначительно и порядок в системе очень мал — частицы хаотично движутся, занимая весь предоставленный веществу объем. [c.204]

    Введем масштабы геометрических и газодинамических Сс = С1 параметров. Момент количества движения потока М1 и внутренняя энергия потока 1 характеризуют энергию, вводимую в камеру энергетического разделения с рабочим телом. Зависимой перемен-1Н0Й, к определению которой сводится анализ, является разность энтальпии Асх. В качестве характеристики охлажденного потока примем плотность дг газа в вихревой трубе перед диафрагмой. Поскольку перепады давлений и температур на диафрагме невелики, можно принять А1х = 1с — 1х=Ср(Тс — Т х) =Ср(Гс—Т г) =А 2. [c.21]

    Можно упомянуть также об адиабатических методах [3]. В методе бомбы постоянного объема, или методе взрыва, к уравнениям (1), (3) добавляется условие адиабатичности 17ясх = и оа, где и — внутренняя энергия газовой смеси. В методе бомбы постоянного давления, или методе мыльного пузыря, дополнительным уравнением является условие сохранения энтальпии Яж = Якон. Дальнейший анализ экспериментальных данных связан с обычной процедурой пол> чения МНК оценок параметров зависимости от температуры и их доверительных интервалов. При анализе по второму закону термодинамики константа равновесия ищется обычно в виде [c.128]

    При образовании раствора происходит перестройка молекулярной структуры как растворимого вещества, так и растворителя. Это связано с изменением взаимного расположения и ориентации молекул (а иногда и с изменением химического строения), и следовательно, с изменением энергии молекулярного взаимодействия. Перестройка структуры приводит к тому, что зависимость термодинамических свойств растворов от состава становится весьма сложной и эти свойства вообще говоря, не могут быть получены из термодинамических свойств компонентов по принципу аддитивности. Объем раствора отличается от суммы объемов чистых компонентов (чаще всего он уменьшается). Точно так же, внутренняя энергия и эталь-пия раствора отличаются от суммарных энергии и энтальпии компонентов, взятых при тех же внешних условиях (температуре и давлении), что и раствор. Изменение энергии и энтальпии проявляется в тепловом э екте смешения, который приводит к охлаждению или (чаще) к разогреванию раствора. [c.200]

chem21.info