Математика 3 класс: примеры на умножение и деление, сложение и вычитание. Деление углом 3 класс примеры


Математика. Деление уголком | Сайт Леонида Некина

Главная > Образование > Математика > МАТЕМАТИКА «С НУЛЯ» (учебник) >

<< Назад  |   Оглавление  |   Далее >>

Деление «уголком» — это, на мой взгляд, самая тяжелая, самая нудная тема во всей школьной математике. Тут нам придется всерьез поднапрячься. Пусть, однако, нас вдохновляет мысль, что весь последующий материал будет значительно легче и приятнее.

Прежде всего, рассмотрим деление на однозначное число. Допустим, мы хотим вычислить значение выражения

648 / 2.

Пользуясь свойствами умножения, мы можем расписать делимое таким образом:

648 =

 6  ∙ 100 +  4  ∙ 10 +  8  =

 3  ∙  2  ∙ 100 +  2  ∙  2  ∙ 10 +  4  ∙  2  =

( 3  ∙ 100 +  2  ∙ 10 +  4 )  ∙  2  =

 324  ∙  2 .

После этого становится очевидно, что частное от деления равно

648 / 2 = 324.

Но это мы взяли самый что ни на есть простейший случай, когда каждую отдельно взятую цифру делимого можно поделить на делитель. А вот пример несколько посложнее:

156 / 2 = ?

Здесь первая цифра оказалась меньше делителя. Поэтому, расписывая делимое, мы не будем отрывать ее от второй цифры:

156 =

 15  ∙ 10 +  6 .

Поскольку число  15  не делится нацело на 2, придется нам прибегнуть к делению с остатком. Представим результат такого деления в виде:

 15  =  7 ∙ 2  +  1  =  14  +  1 .

Теперь мы можем продолжать расписывать наше делимое дальше:

156 =

 15  ∙ 10 +  6  =

( 14  +  1 ) ∙ 10 +  6  =

 14   ∙ 10 +  1  ∙ 10 +  6  =

 14  ∙ 10 +  16  =

 7  ∙  2  ∙ 10 +  8  ∙  2  =

( 7  ∙ 10 +  8 ) ∙  2  =

 78  ∙  2 .

Отсюда моментально получаем ответ:

156 / 2 = 78.

Такого рода расчеты можно проводить в уме и сразу же писать ответ. Но мы сейчас перепишем их в виде краткой таблицы. Умение составлять такие таблицы нам пригодится, когда мы займемся делением на многозначные числа, когда всё окажется не так просто. Делимое и делитель запишем так:

 

 1 

 5 

 6 

 2 

 

   

   

 

   

   

При делении первых двух разрядов ( 15 ) на двойку получается  7  плюс еще какой-то остаток. С этим остатком мы разберемся чуть позже, а пока запишем  семерку  под чертой снизу от делителя (здесь у нас со временем будет выписан полный ответ):

 

 1 

 5 

 6 

 2 

 

   

   

 

 7

   

Умножаем на эту  семерку  наш делитель ( 2 ) и записываем ответ ( 14 ) под первыми двумя разрядами делимого ( 15 ):

 

 1 

 5 

 6 

 2 

 

 1 

 4 

 

 7

   

Теперь настало время вычислить остаток от деления  15-ти  на  2 . Он равен, очевидно,

 15  −  2  ∙  7  =  15  −  14 .

У нас уже всё подготовлено, чтобы выполнить это вычитание «столбиком»:

 

 1 

 5 

 6 

 2 

 

 1 

 4 

 

 7 

   

 

 1 

 

 

 

У нас получается  единица , к которой мы приписываем  шестерку  из следующего разряда делимого:

 

 1 

 5 

 6 

 2 

 

 1 

 4 

 

 7 

   

 

 1 

 6 

 

 

В результате такого приписывания у нас получается число  16 . Мы делим его на наш делитеть ( 2 ) и получаем  8 . Эту  восьмерку  пишем в строке ответа, под чертой снизу от делителя: 

 1 

 5 

 6 

 2 

 

 1 

 4 

 

 7 

 8 

 

 1 

 6 

 

 

Ответ мы получили, однако правила составления таблицы таковы, что нам надо добавить в нее еще две строки. Мы должны формальным образом убедиться, что не потеряли остаток от деления. Умножаем делитель ( 2 ) на последнюю цифру ответа ( 8 ), приписываем результат ( 16 ) снизу к нашей таблице в последние два разряда делимого:

 

 1 

 5 

 6 

 2 

 

 1 

 4 

 

 7 

 8 

 

 1 

 6 

 

 

 

 1 

 6 

 

 

Вычитаем последнюю строку из предпоследней и получаем 0:

 

 1 

 5 

 6 

 2 

 

 1 

 4 

 

 7 

 8 

 

 1 

 6 

 

 

 

 1 

 6 

 

 

 

 

 0 

 

 

Этот последний нуль есть не что иное, как остаток от деления, который образовался бы в том случае, если бы мы рассматривали деление с остатком:

156 : 2 = 78 (ост. 0).

Чтобы получше это понять, возьмем похожий пример, в котором, однако, остаток не равен нулю:

157 : 2 = 78 (ост. 1).

Таблица для этого примера выглядит так:

 

 1 

 5 

 7

 2 

 

 1 

 4 

 

 7 

 8 

 

 1 

 7

 

 

 

 1 

 6 

 

 

 

 

 1

 

 

Здесь, опять-таки, остаток стоит в последней строке. Для полноты картины распишем наше делимое в таком виде:

157 =

 14  ∙ 10 +  17  =

 7  ∙  2  ∙ 10 +  8  ∙  2  + 1 =

( 7  ∙ 10 +  8 ) ∙  2  + 1 =

 7 8  ∙  2  + 1

Теперь мы готовы к тому, чтобы делить (нацело или с остатком) на многозначные числа. Это делается при помощи подобной же таблицы (именно из-за ее особого вида данная процедура получила название деление «уголком»). Допустим, требуется выполнить деление с остатком:

135674 : 259 = ?

Приступаем к заполнению таблицы:

 

                

 1 

 3 

 5 

 6 

 7 

 4 

 2 

 5 

 9 

 

 

 

 

 

 

 

 

 

 

В данном случае, чтобы найти первую цифру частного, надо взять первые четыре цифры делимого ( 1356 ) и получившееся число поделить (с остатком) на делитель ( 259 ). Почему надо взять именно первые четыре цифры делимого? Потому что если бы мы взяли хотя бы на одну цифру меньше, то получившееся число ( 135 ) оказалось бы меньше делителя ( 259 ), а это совсем не то, из чего можно было бы извечь полезную информацию. Итак, возьмем первые четыре цифры делимого и рассмотрим следующее деление с остатком:

 1356  :  259  = ?

Тут нам помогут приближенные вычисления, для которых, как мы знаем, вовсе необязательно, чтобы числа делились друг на друга нацело:

 1356  /  259  ≈ 1356 / 300 ≈ 1500 / 300 = 15 / 3 =  5 .

Зная результат приближенного деления, мы можем предположить, что, скорее всего,

 1356  :  259  =  5  (остаток — пока неважно какой).

Конечно, абсолютной уверенности у нас нет. Здесь вместо  пятерки  вполне может стоять  четверка  или  шестерка , однако вряд ли мы ошиблись больше, чем на одну единицу. Имея это в виду, тем не менее берем эту  пятерку  и заносим ее в нашу таблицу в строку ответа. После этого умножаем на нее делитель ( 259 ) и при этом записываем ответ под делимым в подходящие разряды:

 

 

 1 

 3 

 5 

 6 

 7 

 4 

 2 

 5 

 9 

 

   1 

   2 

   4

 

 

 

 

 

 

 259  ∙  5  =  

 1 

 2 

 9 

 5 

 

 

 5 

 

 

Здесь «маленькие» цифры — это побочный продукт процедуры умножения: мы познакомились с ними, когда учились умножать «в столбик». После того как умножение выполнено, они становятся больше не нужны: на них можно просто не обращать внимания. Выражение  259  ∙  5 , написанное слева от таблицы, помещено сюда только ради пояснения того, что мы делаем. К таблице оно, собственно, не принадлежит, и в будущем мы такие пояснения выписывать не будем. Тут важно отметить, что результат нашего умножения ( 1295 ) оказался меньше записанного над ним числа  1356 , составленного из первых четырех цифр делимого. Если бы это было не так, то это означало бы, что приближенное деление дало нам завышенный результат. Нам надо было бы тогда зачеркнуть  пятерку  в строке ответа, на ее место поставить  четверку  — после чего зачеркнуть и переделать все наши последующие вычисления. Но нам на этот раз повезло, и ничего переделывать не требуется.

Теперь выполняем вычитание в столбик и получаем:

 

 

 1 

 3 

 5 

 6 

 7 

 4 

 2 

 5 

 9 

 

   1 

   2 

   4

 

 

 

 

 

 

 259  ∙  5  =  

 1 

 2 

 9 

 5 

 

 

 5 

 

 

 

 

 

 6 

 1 

 

 

 

 

 

Внимательно приглядимся к полученной разности ( 61 ). Очень важно, что она оказалась меньше делителя ( 259 ). В противном случае мы пришли бы к выводу, что приближенное деление дало нам заниженный результат и нам пришлось бы теперь исправлять в строке ответа  пятерку  на  шестерку , а также переделывать все последующие вычисления. К счастью, этого не случилось. Приближенное вычисление нас не подвело, и мы теперь совершенно точно знаем, что,

 1356  :  259  =  5  (ост.  61 ).

Возвращаемся к таблице. К нашему остатку ( 61 ) приписываем  семерку  из следующего разряда делимого и приступаем к нахождению второй цифры ответа. Это делается с помощью точно такой же процедуры, что и раньше. Потом — очередь за третьей цифрой. В конце концов таблица принимает такой вид:

 

 

 1 

 3 

 5 

 6 

 7 

 4 

 2 

 5 

 9 

 

   1 

   2 

   4

 

 

 

 

 

 

 259  ∙  5  =  

 1 

 2 

 9 

 5 

 

 

 5 

 2 

 3 

 

 

 

 6 

 1 

 7 

 

 

 

 

 

 

 

   1

   1

 

 

 

 

 

 259  ∙  2  =   

 

 

 5 

 1 

 8 

 

 

 

 

 

 

 

 

 9 

 9 

 4 

 

 

 

 

 

 

 

   1

  2

 

 

 

 

 259  ∙  3  =   

 

 

 

 7 

 7 

 7 

 

 

 

 

 

 

 

 2 

 1 

 7 

 

 

 

Можно выписывать окончательный ответ:

135674 : 259 = 523 (ост. 217).

Самая большая неприятность в делении «уголком» состоит в том, что приближенные вычисления, к которым приходится прибегать по ходу дела, не дают сразу гарантированно правильного результата и нуждаются иногда в последующей коррекции. Впрочем, по мере тренировки, у нас выработается особое чутье и мы будем уже сразу почти наверняка знать, какие цифры следует писать в строке ответа, чтобы потом ничего больше не надо было исправлять и переделывать.

Разумеется, нам будут попадаться случаи, когда частное содержит нули. Каждый такой нуль позволит сделать в таблице небольшие сокращения. Вот пример такой таблицы:

 

 2 

 6 

 2 

 7

 4 

 0 

 8 

 7 

 

 

   2

   2 

  

 

 

 

 

 

 

 

 2 

 6 

 1 

 

 

 

 3 

 0 

 2 

 0 

 

 

 1 

 7 

 4 

 

 

 

 

 

 

 

   1

   1

 

 

 

 

 

 

 

 

 1 

 7 

 4 

 

 

 

 

 

 

 

 

 

 0 

 

 

 

 

 

Как и в случае умножения «в столбик», для того чтобы было удобнее писать «маленькие» цифры, нам может понадобиться

лист со специальной линовкой для вычислений (формат pdf).

Теперь остается только тренироваться, тренироваться и тренироваться.

 

Из «бесконечного» сборника типовых упражнений

Деление нацело на однозначное число

Деление с остатком на однозначное число

Деление с остатком на однозначное число с возможным «приписыванием» нулей

Деление нацело на двузначное число

Деление с остатком на двузначное число

Деление нацело на трехзначное число

Деление с остатком на трехзначное число

 

 

 

nekin.info

примеры на умножение и деление, сложение и вычитание

Ваш ребенок еще только учится в начальной школе, а вы уже задумываетесь о его дальнейшей учебе, развитии и будущем? Это очень похвально. А думали ли вы над тем, что успеваемость ребенка можно улучшить, если заниматься с ним ежедневно по математике всего лишь 15 минут в день дополнительно? И это не выдумки. В материалах этой статьи мы приведем примеры и задачи для школьников начальной школы по математике, а именно, для третьеклассников. (Для удобства решения приведенные ниже задания вы можете распечатать).

Как учить ребенка учиться

Умеет ли ваш ребенок учиться? Уверена, что многих родителей этот вопрос поставил в тупик. А действительно, что значит «уметь учиться»? Когда ваш юный школьник только пошел в школу, после занятий, возможно, он бежал домой и очень хотел сразу же делать уроки. Так бывает, когда дети очень ждут поступления в 1 класс. Но со временем интересы к своевременному выполнению домашнего задания ослабевают и «домашка» становится скучным времяпровождением.

А ведь именно нежелание выполнять домашние задания, готовиться к школьным рефератам, семинарам и викторинам, становится основной причиной того, что ребенок вначале не хочет, а после и не умеет учиться. Пробелы в знаниях могут накапливаться словно снежный ком, снижая успеваемость школьника и убивая в нем желание учиться.Математика 3 класс.jpg

Чтобы школьник учился этой сложной и ответственной науке – учиться – родители должны всячески помогать ему: составить распорядок дня, учить ребенка выполнять домашнее задание наперед, прорешивать или прописывать дополнительные упражнения, чтобы тренировать и руку для письма, и мозг для устного счета. Математике дается детям начального звена сложнее всего, именно поэтому мы и подготовили для школьников 3 класса этот материал.

Примеры по математике на умножение и деление

Еще во втором классе дети выучили таблицу умножения. Если вы сейчас находитесь в полном заблуждении, как выучить с ребенком таблицу умножения, то рекомендуем к ознакомлению следующий материал по ссылке. На протяжении второго класса школьники постепенно осваивали простые примеры и задачи, используя таблицу умножения, а в третьем классе они оттачивают навыки умножения и сложения.

Задание 1

Заменить сложение вычитанием в тех примерах, в которых от замены знака ответ не изменится:

5 + 5 + 5 =1 + 1 + 1 + 1 =0 + 0 + 0 + 0 + 0 =8 + 8 + 8 + 8 =7 + 7 — 7 + 7 =7 + 7 + 7 — 7 =14 + 14 =61 + 61 =

Подсказка:

5 + 5 + 5 = 15, если заменить знак «+» на знак «•», то получится5 • 5 • 5 = 125. 15 не равно 125. Значит, в первом равенстве заменить знак «+» на знак «•» нельзя.

По аналогии решаем стальные равенства и делаем выводы о возможной или невозможной замене знака «+» на знак «•».

Задание 2

Какие выражения нельзя заменить суммой, чтобы ответ не изменился:

0 • 4 =1 • 0 =1 • 1 =1 • 6 =0 • 9 =7 • 0 =5 • 2 =2 • 2 =

Подсказка:

Вспомните, каким правилом следует пользоваться при умножении на ноль.

Задание 3

Решите примеры:

45 : 5 + 1 =45 : 5 • 1 =543 — 5 • 1 =(543 — 5) • 1 =423 + 7 • 0 =(423 + 7) • 1 =10 — 0 + 4 =10 • 0 + 4 =

Задание 4

Из каждого выражения на умножение составьте выражения на деление:

6 • 8 =7 • 1 =4 • 0 =0 • 3 =4 • 9 =

Подсказка

6 • 8 = 4848 : 8 = 648 : 8 = 6

Задание 5

Какое значение имеют следующие выражение:

а : а =а : 1 =0 : а =а : 0 =

Задание 6

Решите примеры:

(596 + 374) • 1 =596 + 374 • 1 =(596 + 374) • 0 =596 + 374 + 0 =0 • 320 : 1 =0 + 320 : 1 =

Обязательно повторите с ребенком правила умножения и деления числа на единицу и умножения или деления числа на ноль, а также особенности деления ноля на любое число. Часто именно в этих примерах дети делают ошибки, которые влекут за собой дальнейшее неправильное решение примеров, выражений и задач.

Задание 7 (задача)

В оздоровительный лагерь привезли фрукты: 7 ящиков винограда и 5 ящиков персиков. Масса привезенных персиков составляет 40 килограммов. Какая масса винограда, если ящик винограда на 1 килограмм весит больше, чем ящик персиков.

Решение

Найдем, сколько весит один ящик персиков. Известно, что общая масса персиков составляет 40 кг, а всего ящиков – 5.

Первое действие:40 : 5 = 8 (кг) весит один ящик персиков.

Теперь найдем, сколько весит один ящик винограда, если известно, что он тяжелее на 1 кг, чем ящик персиков.

Второе действие:8 + 1 = 9 (кг) весит один ящик винограда.

Теперь находим общую массу всего винограда, если известно, что один ящик весит 9 кг, а всего винограда – 7 ящиков.

Третье действие:9 • 7 = 63 (кг) – общая масса винограда.

Ответ: масса привезенного винограда составляет 63 кг.

Задание 8

Сосна может расти 600 лет, береза – 350 лет. А ива – в 6 раз меньше от сосны. Что может расти дольше береза или ива? И насколько лет?

Решение

Вначале рассчитаем, сколько лет может расти ива, если известно, что она растет в 6 раз меньше, чем сосна.

Первое действие:600 : 6 = 100 (лет) может расти ива.

Теперь, когда известно, что ива может расти 100 лет, сравним продолжительность «жизни» березы и ивы. Известно, что береза растет 350 лет, а ива – 100. 350 больше чем 100, значит береза может расти дольше ивы. Чтобы рассчитать, на сколько береза может расти дольше ивы, решаем равенство.

Второе действие:350 — 100 = 250 (лет) – на столько береза может расти дольше ивы

Ответ: береза может расти дольше ивы на 250 лет.

Важно! Если задачу можно решить несколькими способами, обязательно сообщите об этом ребенку. Пусть потренирует логику и начертит все возможные схем решения задачи, т.е. составить схематическое условие. Ведь правильно составленное условие задачи – это 90% успешного решения.

Задание 9

В понедельник гусеница начала ползти вверх по дереву высотой 9 метров. За день она поднялась вверх на 5 метров, а за ночь – опустилась на 2 метра. На какой день гусеница достигнет верхушки дерева?

Решение

Для начала рассчитаем, на сколько метров поднимается гусеница вверх за один день, с учетом того, что ночью на опускается.

Первое действие:5 — 2 = 3 (м) гусеница проползает за сутки вверх.

Теперь найдем количеств дней, необходимых на преодоление расстояния 9 метров вверх по дереву.

Второе действие:9 : 3 = 3 (дня) нужно гусенице, чтобы достичь вершины дерева.

Ответ: 3 дня нужно гусенице, чтобы достичь вершины дерева.

Задание 10

В коробке было 18 килограммов печенья. Сначала из нее взяли 13 килограммов печенья, потом досыпали в 4 раза больше, чем оставалось. Сколько килограммов печенья стало в коробке.

Решение

Сначала найдем, сколько килограммов печенья осталось в коробке, после того, как из нее забрали 13 килограммов.

Первое действие:18 — 13 = 5 (кг) печенья осталось в коробке

Теперь рассчитаем сколько килограммов печенья досыпали в коробку.

Второе действие:5 • 4 = 20 (кг) досыпали

Сложим тот вес, который оставался в коробке, и тот, который досыпали, чтобы найти, сколько килограммов печения стало в коробке.

Третье действие:5 + 20 = 25 (кг) стало

Ответ: 25 килограммов печения стало в коробке.

Задание 11

За лето хозяйка вырастила 208 домашних птиц. Кур и уток было 129, а уток и гусей – 115. Сколько кур, уток и гусей вырастила хозяйка за лето?

Решение

Известно, что кур и уток было 129, а всего птиц – 208. Значит, можно найти количество гусей.

Первое действие:208 (птиц) – 129 (уток + кур) = 79 гусей

Также известно, что уток и гусей всего 115, значит мы можем найти, сколько было кур.

Второе действие:208 (птиц) – 115 (уток + гусей) = 93 кур

Теперь, когда мы знаем количество гусей и кур, а также общее количество домашних птиц, мы можем найти количество уток.

Третье действие:208 — (79 + 93) = 36 уток

Ответ: за лето хозяйка вырастила 79 гусей, 93 кур и 36 уток.

Второй вариант решения

Известно, что кур и уток было 129, а всего птиц – 208. Значит, можно найти количество гусей.

Первое действие:208 (птиц) – 129 (уток + кур) = 79 гусей

Также известно, что уток и гусей всего 115, значит мы можем найти, сколько было уток

Второе действие:115 (уток + гусей) – 79 (гусей) = 36 уток

Теперь, когда мы знаем количество гусей и уток по отдельности, а также общее количество домашних птиц, мы можем найти количество кур.

Третье действие:208 – (79 + 36) = 208 – 115 = 93 кур

Ответ: за лето хозяйка вырастила 79 гусей, 93 кур и 36 уток.

Примеры и задачи по математике на сложение и вычитание

Основной задачей заданий и примеров по математике на сложение и вычитание в третьем классе является популяризация математических знаний и идей, поддержка и развитие математических знаний школьников, стимулирование и мотивация учеников в изучении естественно-математический предметов.Задания по математике 3 класс.jpg

Задание 1

Реши уравнения:

Х – 40 = 60Х + 4 = 61Х – 16 = 25Х + 25 = 84Х – 45 = 251Х + 56 = 106Х + 78 = 301

Задание 2

Расставьте скобки так, чтобы ответом выражения в первом случае было 6, а в втором – 2:

12 : 2 + 2 • 2 =

Подсказка

12 : (2 + 2) • 2 = 612 : (2 + 2 • 2) = 2

Важно! Некоторые условия составлены таким образом, чтобы ребенок включал логическое мышление. Прорешивая такие задания он мыслит, делает предположения, размышляет, и находит правильное решение задания.

Задание 3

Перевести в одну систему измерения и решить выражения:

1 м – 5 дм =1 м – 5 см =6 м 5 дм – 8 дм =5 см + 5 см =15 см + 5 дм =3 дм – 6 см =3 дм 5 см – 15 см =1 дм 2 см – 3 см =1 м 6 дм – 8 дм =

Задание 4

Из каждого выражения произведения отнять 15 и записать новые выражение и решить их:

7 • 3 =7 • 6 =7 • 9 =8 • 6 =8 • 4 =3 • 9 =4 • 4 =5 • 7 =

Подсказка

Если 7 • 3 = 21, то 21 – 15 = 6

Задание 5

Решить примеры:

7 • 6 + 7 • 4 =21 : 3 – 6 =(35 – 28) • 5 =(68 – 26) : 7 =7 + (6 : 2) =3 – 14 : 2 =60 – 63 : 7 =81 – 56 : 7 =50 + 42 : 7 =

Задание 6 (задача)

В шести одинаковых бочонках 24 литра воды. Сколько литров воды в сети таких же бочонках, на сколько литров больше во втором случае, чем в первом?

Решение

Вначале найдем, сколько воды вмещается в один бочонок.

Первое действие:24 : 6 = 4 (л) в одном бочонке

Теперь рассчитаем, сколько воды в семи одинаковых бочонках

Второе действие:4 • 7 = 28 (л) в сети одинаковых бочонках

Найдем ответ на главный вопрос задачи, на сколько литров больше во втором случае, чем в первом.

Третье действие:28 – 24 = 4 (л) на столько литров больше во втором случае, чем в первом

Ответ: на 4 литра воды больше во втором случае, чем в первом

Задание 7

Отец и сын купили на рынке картошку в 6 одинаковых сетках. Отец принес домой 4 сетки, а сын 2. Всего получилось 18 килограммов картошки. Сколько килограммов принес отец? Сколько килограммов принес сын? На сколько больше килограммов картошки принес отец?

Решение

Рассчитаем, сколько картошки было в одной сетке, если известно, то всего принести 18 килограммов в 6 одинаковых сетках.

Первое действие:18 : 6 = 3 (кг) в одной сетке.

Теперь узнаем сколько килограммов принес отец и сколько килограммов принес сын.

Второе действие:3 • 4 = 12 (кг) принес отец

Третье действие:3 • 2 = 6 (кг) принес сын

Найдем искомую разницу.

Четвертое действие:12 – 6 = 6 (кг) на столько больше принес отец.

Ответ: Отец принес на 6 килограммов больше картошки, чем сын.

Задание 8

За 5 часов работы двигателя было израсходовано 30 литров бензина. Сколько бензина будет израсходовано за 8 часов работы двигателя. На сколько больше двигатель израсходует бензина за разницу во времени?

Решение

Рассчитаем, сколько бензина расходует двигатель за час своей работы.

Первое действие:30 : 5 = 6 (л) за один час работы

Рассчитаем, сколько составляет разница во времени?

Второе действие:8 – 5 = 3 (ч) разница во времени

Теперь можно рассчитать, сколько бензина израсходовано за оставшиеся 3 часа.

Третье действие:3 • 6 = 18 (л) потрачено за 3 часа.

Ответ: за 3 часа двигатель истратил 18 литров бензина

Второй способ решения

Рассчитаем, сколько бензина расходует двигатель за час своей работы.

Первое действие:30 : 5 = 6 (л) за один час работы

Рассчитаем, сколько бензина будет израсходовано за 8 часов работы двигателя.

Второе действие:8 • 6 = 48 (л) израсходовано за 8 часов работы двигателя

Теперь можно рассчитать разницу потраченного топлива.

Третье действие:48 – 30 = 18 (л) разница потраченного топлива

Ответ: за 3 часа двигатель истратил 18 литров бензина

Важно! Задания на сложение и вычитание не исключают в своем условии или решении возможность других математических действий, например, умножения или деления. Ученик третьего класса уже должен уметь различать в условии требования к сложению и умножению, делению и вычитанию. Именно потому задания по математике для этого класса часто носят смешанный характер.

Задание 9

В двух прудах плавало 56 уток. Когда из первого пруда во второй перелетело 7 уток, то в нем осталось 25. Сколько уток с самого начала плавало во втором пруду?

Решение

Известно, что после того, как из первого пруда улетело 7 уток, в нем осталось 25. Находим количество уток в первом пруду с самого начала.

Первое действие:7 + 25 = 32 (утки) было в первом пруду.

Теперь можем найти, сколько уток плавало во втором пруду с самого начала.

Второе действие:56 – 32 = 24 (утки) было во втором пруду.

Ответ: с самого начала во втором пруду было 24 утки.Задачи по математике 3 класс.jpg

Задание 10

С первого куста собрали 9 килограммов ягод. Со второго куста собрали на 3 килограммов больше, чем с первого, а с третьего – на 2 килограммов больше, чем со второго. Сколько килограммов ягод собрали с третьего куста? Сколько всего ягод собрали?

Решение

Вначале найдем, сколько килограммов ягод собрали со второго куста.

Первое действие:9 + 3 = 12 (кг) ягод со второго куста

Теперь определяем, сколько килограммов ягод собрали с третьего куста

Второе действие:12 + 2 = 14 (кг) год с третьего куста

Когда все составляющие известны, находим ответ на главный вопрос задачи.

Третье действие:9 + 12 + 14 = 35 (кг) ягод всего

Ответ: всего собрали 35 килограммов ягод.

Вместо заключения

Уделяйте математике достаточно внимания уже с начальной школы. Этот предмет не только тренируем мозг в устном счете, но и умении логически мыслить, развивать смекалку. Постепенно привыкая к выполнению дополнительных и основных заданий, ребенок учится учиться, выполнять требования учителя, грамотно планировать свое время, распределять время для учебы и досуга.

Математические задания для третьеклассников моно составлять самостоятельно по приведенным нами аналогии, это не составит особого труда. Зато ваш ученик сможет больше тренироваться в математике, выполнять задания на каникулах и выходных, а также заниматься дополнительно после школы.

childage.ru

примеры на сложение, вычитание, умножение и деление

Чтобы довести счетные навыки до автоматизма, нужна практика и еще раз практика. Ребенок сможет считать быстро и в уме только после решения как минимум пары тысяч примеров, а это значит, нужно решать каждый день, хотя бы понемногу. Школа не вправе давать на дом большой объем заданий, а на уроках автоматизировать навык быстрого и правильного решения примеров просто невозможно из-за ограничения по времени. Поэтому, родители и репетиторы, все в ваших руках! Отличное время для работы с тренажерами по математике - летние каникулы. Нет, не нужно нагружать ребенка и заставлять решать целыми днями, но распечатайте своему чаду 1 лист из тренажера на выбор, пусть решает по чуть-чуть, по 5 примеров утром и вечером. 

Кликайте по картинкам, чтобы открыть их в большом размере, увеличенный лист тренажера можно скачать и распечатать.

Примеры по математике за 3 класс

Тренажер по математике примеры за 3 класс Тренажер по математике примеры за 3 класс Тренажер по математике примеры за 3 класс Тренажер по математике примеры за 3 класс Тренажер по математике примеры за 3 класс Тренажер по математике примеры за 3 класс Тренажер по математике примеры за 3 класс Тренажер по математике примеры за 3 класс Тренажер по математике примеры за 3 класс Тренажер по математике примеры за 3 класс Тренажер по математике примеры за 3 класс Тренажер по математике примеры за 3 класс Тренажер по математике примеры за 3 класс Тренажер по математике примеры за 3 класс Тренажер по математике примеры за 3 класс Тренажер по математике примеры за 3 класс

А еще у нас есть отличный онлайн тренажер по математике! Родителям не нужно ничего распечатывать и проверять, все это за вас совершенно бесплатно сделаем мы! Выбирайте режим и вперед >>

© Копирование допустимо только с прямой активной ссылкой на страницу с оригиналом статьи. При любых заболеваниях не занимайтесь диагностикой и лечением самостоятельно, необходимо обязательно обратиться к врачу - специалисту.Изображения обложек учебной литературы приведены на страницах сайта исключительно в качестве иллюстративного материала (ст. 1274 п. 1 части четвертой Гражданского кодекса РФ)

7gy.ru

Деление многочленов "столбиком" ("уголком").

Начнём с некоторых определений. Многочленом n-й степени (или n-го порядка) будем именовать выражение вида $P_n(x)=\sum\limits_{i=0}^{n}a_{i}x^{n-i}=a_{0}x^{n}+a_{1}x^{n-1}+a_{2}x^{n-2}+\ldots+a_{n-1}x+a_n$. Например, выражение $4x^{14}+87x^2+4x-11$ есть многочлен, степень которого равна $14$. Его можно обозначить так: $P_{14}(x)=4x^{14}+87x^2+4x-11$.

Коэффициент $a_0$ называют старшим коэффициентом многочлена $P_n(x)$. Например, для многочлена $4x^{14}+87x^2+4x-11$ старший коэффициент равен $4$ (число перед $x^{14}$). Число $a_n$ называют свободным членом многочлена $P_n(x)$. Например, для $4x^{14}+87x^2+4x-11$ свободный член равен $(-11)$. Теперь обратимся к теореме, на которой, собственно говоря, и будет основано изложение материала на данной странице.

Для любых двух многочленов $P_n(x)$ и $G_m(x)$ можно найти такие многочлены $Q_p(x)$ и $R_k(x)$, что будет выполнено равенство

\begin{equation} P_n(x)=G_m(x)\cdot Q_p(x)+R_k(x) \end{equation}

причём $k < m$.

Словосочетание "разделить многочлен $P_n(x)$ на многочлен $G_m(x)$" означает "представить многочлен $P_n(x)$ в форме (1)". Будем называть многочлен $P_n(x)$ – делимым, многочлен $G_m(x)$ – делителем, многочлен $Q_p(x)$ – частным от деления $P_n(x)$ на $G_m(x)$, а многочлен $R_k(x)$ – остачей от деления $P_n(x)$ на $G_m(x)$. Например, для многочленов $P_6(x)=12x^6+3x^5+16x^4+6x^3+8x^2+2x+1$ и $G_4(x)=3x^4+4x^2+2$ можно получить такое равенство:

$$ 12x^6+3x^5+16x^4+6x^3+8x^2+2x+1=(3x^4+4x^2+2)(4x^2+x)+2x^3+1 $$

Здесь многочлен $P_6(x)$ является делимым, многочлен $G_4(x)$ – делителем, многочлен $Q_2(x)=4x^2+x$ – частным от деления $P_6(x)$ на $G_4(x)$, а многочлен $R_3(x)=2x^3+1$ – остатком от деления $P_6(x)$ на $G_4(x)$. Замечу, что степень остатка (т.е. 3) меньше степени делителя, (т.е. 4), посему условие равенства (1) соблюдено.

Если $R_k(x)\equiv 0$, то говорят, что многочлен $P_n(x)$ делится на многочлен $G_m(x)$ без остатка. Например, многочлен $21x^6+6x^5+105x^2+30x$ делится на многочлен $3x^4+15$ без остатка, так как выполнено равенство:

$$ 21x^6+6x^5+105x^2+30x=(3x^4+15)\cdot(7x^2+2x) $$

Здесь многочлен $P_6(x)=21x^6+6x^5+105x^2+30x$ является делимым; многочлен $G_4(x)=3x^4+15$ – делителем; а многочлен $Q_2(x)=7x^2+2x$ – частным от деления $P_6(x)$ на $G_4(x)$. Остаток равен нулю.

Чтобы разделить многочлен на многочлен часто применяют деление "столбиком" или, как его ещё называют, "уголком". Реализацию этого метода разберём на примерах.

Перед тем, как перейти к примерам, я введу ещё один термин. Он не является общепринятым, и использовать его мы будем исключительно для удобства изложения материала. До конца этой страницы будем называть старшим элементом многочлена $P_n(x)$ выражение $a_{0}x^{n}$. Например, для многочлена $4x^{14}+87x^2+4x-11$ старшим элементом будет $4x^{14}$.

Пример №1

Разделить $10x^5+3x^4-12x^3+25x^2-2x+5$ на $5x^2-x+2$, используя деление "столбиком".

Решение

Итак, мы имеем два многочлена, $P_5(x)=10x^5+3x^4-12x^3+25x^2-2x+5$ и $G_2(x)=5x^2-x+2$. Степень первого равна $5$, а степень второго равна $2$. Многочлен $P_5(x)$ – делимое, а многочлен $G_2(x)$ – делитель. Наша задача состоит в нахождении частного и остатка. Поставленную задачу будем решать пошагово. Будем использовать ту же запись, что и для деления чисел:

Первый шаг

Разделим старший элемент многочлена $P_5(x)$ (т.е. $10x^5$) на старший элемент многочлена $Q_2(x)$ (т.е. $5x^2$):

$$ \frac{10x^5}{5x^2}=2x^{5-2}=2x^3. $$

Полученное выражение $2x^3$ – это первый элемент частного:

Умножим многочлен $5x^2-x+2$ на $2x^3$, получив при этом:

$$ 2x^3\cdot (5x^2-x+2)=10x^5-2x^4+4x^3 $$

Запишем полученный результат:

Теперь вычтем из многочлена $10x^5+3x^4-12x^3+25x^2-2x+5$ многочлен $10x^5-2x^4+4x^3$:

$$ 10x^5+3x^4-12x^3+25x^2-2x+5-(10x^5-2x^4+4x^3)=5x^4-16x^3+25x^2-2x+5 $$

Этот многочлен допишем уже под чертой:

На этом первый шаг заканчивается. Тот результат, что мы получили, можно записать в развёрнутой форме:

$$ 10x^5+3x^4-12x^3+25x^2-2x+5=(5x^2-x+2)\cdot 2x^3+5x^4-16x^3+25x^2-2x+5 $$

Так как степень многочлена $5x^4-16x^3+25x^2-2x+5$ (т.е. 4) больше степени многочлена $5x^2-x+2$ (т.е. 2), то процесс деления надобно продолжить. Перейдём ко второму шагу.

Второй шаг

Теперь уже будем работать с многочленами $5x^4-16x^3+25x^2-2x+5$ и $5x^2-x+2$. Точно так же, как и на первом шаге, разделим старший элемент первого многочлена (т.е. $5x^4$) на старший элемент второго многочлена (т.е. $5x^2$):

$$ \frac{5x^4}{5x^2}=x^{4-2}=x^2. $$

Полученное выражение $x^2$ – это второй элемент частного. Прибавим к частному $x^2$

Умножим многочлен $5x^2-x+2$ на $x^2$, получив при этом:

$$ x^2\cdot (5x^2-x+2)=5x^4-x^3+2x^2 $$

Запишем полученный результат:

Теперь вычтем из многочлена $5x^4-16x^3+25x^2-2x+5$ многочлен $5x^4-x^3+2x^2$:

$$ 5x^4-16x^3+25x^2-2x+5-(5x^4-x^3+2x^2)=-15x^3+23x^2-2x+5 $$

Этот многочлен допишем уже под чертой:

На этом второй шаг заканчивается. Полученный результат можно записать в развёрнутой форме:

$$ 10x^5+3x^4-12x^3+25x^2-2x+5=(5x^2-x+2)\cdot (2x^3+x^2)-15x^3+23x^2-2x+5 $$

Так как степень многочлена $-15x^3+23x^2-2x+5$ (т.е. 3) больше степени многочлена $5x^2-x+2$ (т.е. 2), то продолжаем процесс деления. Перейдём к третьему шагу.

Третий шаг

Теперь уже будем работать с многочленами $-15x^3+23x^2-2x+5$ и $5x^2-x+2$. Точно так же, как и на предыдущих шагах, разделим старший элемент первого многочлена (т.е. $-15x^3$) на старший элемент второго многочлена (т.е. $5x^2$):

$$ \frac{-15x^3}{5x^2}=-3x^{2-1}=-3x^1=-3x. $$

Полученное выражение $(-3x)$ – это третий элемент частного. Допишем к частному $-3x$

Умножим многочлен $5x^2-x+2$ на $(-3x)$, получив при этом:

$$ -3x\cdot (5x^2-x+2)=-15x^3+3x^2-6x $$

Запишем полученный результат:

Теперь вычтем из многочлена $-15x^3+23x^2-2x+5$ многочлен $-15x^3+3x^2-6x$:

$$ -15x^3+23x^2-2x+5-(-15x^3+3x^2-6x)=20x^2+4x+5 $$

Этот многочлен допишем уже под чертой:

На этом третий шаг заканчивается. Полученный результат можно записать в развёрнутой форме:

$$ 10x^5+3x^4-12x^3+25x^2-2x+5=(5x^2-x+2)\cdot (2x^3+x^2-3x)+20x^2+4x+5 $$

Так как степень многочлена $20x^2+4x+5$ (т.е. 2) равна степени многочлена $5x^2-x+2$ (т.е. 2), то продолжаем процесс деления. Перейдём к четвёртому шагу.

Четвёртый шаг

Теперь уже будем работать с многочленами $20x^2+4x+5$ и $5x^2-x+2$. Точно так же, как и на предыдущих шагах, разделим старший элемент первого многочлена (т.е. $20x^2$) на старший элемент второго многочлена (т.е. $5x^2$):

$$ \frac{20x^2}{5x^2}=4x^{2-2}=4x^0=4. $$

Полученное число $4$ – это четвёртый элемент частного. Допишем к частному $4$

Умножим многочлен $5x^2-x+2$ на $4$, получив при этом:

$$ 4\cdot (5x^2-x+2)=20x^2-4x+8 $$

Запишем полученный результат:

Теперь вычтем из многочлена $20x^2+4x+5$ многочлен $20x^2-4x+8$:

$$ 20x^2+4x+5-(20x^2-4x+8)=8x-3 $$

Этот многочлен допишем уже под чертой:

На этом четвёртый шаг заканчивается. Полученный результат можно записать в развёрнутой форме:

$$ 10x^5+3x^4-12x^3+25x^2-2x+5=(5x^2-x+2)\cdot (2x^3+x^2-3x+4)+8x-3 $$

Так как степень многочлена $8x-3$ (т.е. 1) меньше степени многочлена $5x^2-x+2$ (т.е. 2), то процесс деления завершён. Частным от деления многочлена $P_6(x)$ на многочлен $G_2(x)$ есть многочлен $Q_3(x)=2x^3+x^2-3x+4$. Остаток от деления $P_6(x)$ на $G_2(x)$ – это многочлен $R_1(x)=8x-3$. По сути, мы представили исходный многочлен $P_6(x)$ в форме (1):

$$ P_6(x)=G_2(x)\cdot Q_3(x)+R_1(x) $$

Ответ: частное от деления – многочлен $2x^3+x^2-3x+4$, остаток – многочлен $8x-3$.

Пример №2

Разделить $4x^3+2x-11$ на $x+5$, используя деление "столбиком".

Решение

Здесь можно использовать схему Горнера (и это было бы несколько менее громоздко). Однако для сугубо демонстрационных целей используем деление "столбиком". Подробные пояснения есть в примере №1, посему здесь укажем только ход решения.

Результат можно записать в такой форме:

$$ 4x^3+2x-11=(x+5)\cdot(4x^2-20x+102)-521 $$

Следовательно, частным от деления $4x^3+2x-11$ на $x+5$ является многочлен $4x^2-20x+102$, а остаток есть число $(-521)$ (по сути, это многочлен нулевого порядка).

Ответ: частное – многочлен $4x^2-20x+102$, остаток – число $-521$.

Пример №3

Разделить $7x^3+9x^2-5x+9$ на $5x^7+10x^6-17x^2+14x-7$.

Решение

Степень делителя (т.е. многочлена $5x^7+10x^6-17x^2+14x-7$) равна $7$. Степень делимого (многочлена $7x^3+9x^2-5x+9$) равна 3. В этом ситуации, когда степень делителя больше степени делимого ($7 > 3$) разложение вида (1) возможно лишь в такой форме:

$$ 7x^3+9x^2-5x+9=0\cdot(5x^7+10x^6-17x^2+14x-7)+7x^3+9x^2-5x+9 $$

Ответ: частное есть 0, остаток – многочлен $7x^3+9x^2-5x+9$.

math1.ru

Деление и умножение многочленов уголком и столбиком

Теорема

Пусть Pk(x), Qn(x) – многочлены от переменной x степеней k и n, соответственно, причем k ≥ n. Тогда многочлен Pk(x) можно представить единственным способом в следующем виде:(1)   Pk(x) = Sk–n(x) Qn(x) + Un–1(x),где Sk–n(x) – многочлен степени k–n, Un–1(x) – многочлен степени не выше n–1, или нуль.

Доказательство

По определению многочлена: ; ; ; ,где pi , qi – известные коэффициенты, si , ui – неизвестные коэффициенты.

Введем обозначение: .Подставим в (1)   : ;(2)   .Первый член в правой части – это многочлен степени k. Сумма второго и третьего членов – это многочлен степени не выше k – 1. Приравняем коэффициенты при x k:pk = sk-n qn.Отсюда sk-n = pk / qn.

Преобразуем уравнение (2): .Введем обозначение:   .Поскольку sk-n = pk / qn, то коэффициент при x k равен нулю. Поэтому   – это многочлен степени не выше k – 1,   . Тогда предыдущее уравнение можно переписать в виде:(3)   .

Это уравнение имеет тот же вид, что и уравнение (1), только значение k стало на 1 меньше. Повторяя эту процедуру k–n раз, получаем уравнение: ,из которого определяем коэффициенты многочлена Un–1(x).

Итак, мы определили все неизвестные коэффициенты si , ul. Причем sk–n ≠ 0. Лемма доказана.

Деление многочленов

Разделив обе части уравнения (1) на Qn(x), получим:(4)   .По аналогии с десятичными числами, Sk–n(x) называется целой частью дроби или частным, Un–1(x) – остатком от деления. Дробь многочленов, у которой степень многочлена в числителе меньше степени многочлена в знаменателе называется правильной дробью. Дробь многочленов, у которой степень многочлена в числителе больше или равна степени многочлена в знаменателе называется неправильной дробью.

Уравнение (4) показывает, что любую неправильную дробь многочленов можно упростить, представив ее в виде суммы целой части и правильной дроби.

Деление многочленов уголком

По своей сути, целые десятичные числа являются многочленами, у которых переменная равна числу 10. Например, возьмем число 265847. Его можно представить в виде: .То есть это многочлен пятой степени от 10. Цифры 2, 6, 5, 8, 4, 7 являются коэффициентами разложения числа по степеням числа 10.

Поэтому к многочленам можно применить правило деления уголком (иногда его называют делением в столбик), применяемое к делению чисел. Единственное отличие заключается в том, что, при делении многочленов, не нужно переводить числа больше девяти в старшие разряды. Рассмотрим процесс деления многочленов уголком на конкретных примерах.

Пример деления многочленов уголком

Выделить целую часть дроби и найти остаток от деления: .

Решение

Здесь в числителе стоит многочлен четвертой степени. В знаменателе – многочлен второй степени. Поскольку 4 ≥ 2, то дробь неправильная. Выделим целую часть, разделив многочлены уголком (в столбик):

Приведем подробное описание процесса деления. Исходные многочлены записываем в левый и правый столбики. Под многочленом знаменателя, в правом столбике, проводим горизонтальную черту (уголок). Ниже этой черты, под уголком, будет целая часть дроби.

1.1   Находим первый член целой части (под уголком). Для этого разделим старший член числителя на старший член знаменателя:   .

1.2   Умножаем 2x 2 на x 2 – 3x + 5: . Результат записываем в левый столбик:

1.3   Берем разность многочленов в левом столбике: .

Итак, мы получили промежуточный результат: .

Дробь в правой части неправильная, поскольку степень многочлена в числителе (3) больше или равна степени многочлена в знаменателе (2). Повторяем вычисления. Только теперь числитель дроби находится в последней строке левого столбика.2.1   Разделим старший член числителя на старший член знаменателя:   ;

2.2   Умножаем на знаменатель:   ;

2.3   И вычитаем из последней строки левого столбика:   ;Промежуточный результат: .

Снова повторяем вычисления, поскольку в правой части стоит неправильная дробь.3.1   ;3.2   ;3.3   ;Итак, мы получили: .Степень многочлена в числителе правой дроби меньше степени многочлена знаменателя, 1 < 2. Поэтому дробь – правильная.

Ответ

;2x 2 – 4x + 1 – это целая часть;x – 8 – остаток от деления.

Пример 2

Выделить целую часть дроби и найти остаток от деления: .

Решение

Выполняем те же действия, что и в предыдущем примере:Здесь остаток от деления равен нулю: .

Ответ

.

Умножение многочленов столбиком

Также можно умножать многочлены столбиком, аналогично умножению целых чисел. Рассмотрим конкретные примеры.

Пример умножения многочленов столбиком

Найти произведение многочленов: .

Решение

Умножаем многочлены столбиком.

1   Записываем исходные многочлены друг под другом в столбик и проводим черту.

2.1   Умножаем младший член второго многочлена на первый многочлен: .Результат записываем в столбик.

2.2   Умножаем следующий член второго многочлена на первый многочлен: .Результат записываем в столбик, выравнивая степени x.

2.3   Умножаем следующий (старший) член второго многочлена на первый многочлен: .Результат записываем в столбик, выравнивая степени x.

3   После того, как все члены второго многочлена умножили на первый, проводим черту и складываем члены с одинаковыми степенями x: ; ; ; .

Заметим, что можно было записывать только коэффициенты, а степени переменной x можно было опустить. Тогда умножение столбиком многочленов будет выглядеть так:

Ответ

.

Пример 2

Найти произведение многочленов столбиком: .

Решение

При умножении многочленов столбиком важно записывать одинаковые степени переменной x друг под другом. Если некоторые степени x пропущены, то их следует записывать явно, умножив на нуль, либо оставлять пробелы.

В этом примере некоторые степени пропущены. Поэтому запишем их явно, умноженными на нуль: .Умножаем многочлены столбиком.

1   Записываем исходные многочлены друг под другом в столбик и проводим черту.

2.1   Умножаем младший член второго многочлена на первый многочлен: .Результат записываем в столбик.

2.2   Следующий член второго многочлена равен нулю. Поэтому его произведение на первый многочлен также равно нулю. Нулевую строку можно не записывать.

2.3   Умножаем следующий член второго многочлена на первый многочлен: .Результат записываем в столбик, выравнивая степени x.

2.3   Умножаем следующий (старший) член второго многочлена на первый многочлен: .Результат записываем в столбик, выравнивая степени x.

3   После того, как все члены второго многочлена умножили на первый, проводим черту и складываем члены с одинаковыми степенями x: .

Ответ

.

Автор: Олег Одинцов.     Опубликовано: 21-05-2015

1cov-edu.ru

Конспект урока "Записываем деление уголком" (3 класс)

Каширина Надежда Александровна, учитель МБОУ «СОШ с.Алексеевка»

Урок по математике. Тема: «Записываем деление уголком», 3 класс.

Цель урока: учить выполнять деление двузначного и трехзначного числа на однозначное, выполнять деление с остатком.

Задачи урока: 1)Актуализировать знание нумерации многозначных чисел, приемы умножения на однозначное число, алгоритм деления с остатком и правило деления суммы на число. 2) Развивать вычислительные навыки, логическое мышление, математическую речь. 3) Развивать мыслительные операции: аналогия, анализ, синтез, обобщение. Оборудование: Компьютер, мультимедиа проектор, экран. М.И. Башмаков, М.Г. Нефедова. Математика. 3 класс. Учебник – тетрадь в 3-х ч. – М.: Издательство «Астрель», 2012. Ход урока.

1.Самоопределение к учебной деятельности (1 – 2 мин.)

Мотивация учащихся к учебной деятельности посредством анализа девиза урока: « Где есть желание, найдётся путь!» (Слайд 2). - Почему сегодня у нас такой девиз? - А в пути поможет нам веселый человечек – Смайлик. (Слайд 3). (Слайд 4, 5). - Вы готовы к работе? Тогда в путь. - Пожелайте друг- другу удачи! 2.Актуализация знаний и фиксация затруднений в пробном действии (5 – 6 мин.)8

а)- Запишите ответ выражением и найдите его значение.

- Сова съедает в день 13 мышей. Сколько съест сова за неделю?

- Какое выражение у вас получилось?

- Найдите его значение.

- Большая синица за летний день подлетает с кормом к гнезду 400 раз. Сколько раз прилетит синица с кормом у гнезду за неделю?

- А теперь какое выражение вы составили? Найдите его значение.

б) – Назовите числа, которые без остатка делятся:

- На 5: 25, 28, 30, 38, 40, 49, 50, 55, 61, 67.

- На 8: 11,15,16,18,24,27,32,34,36,40.

в) – Посмотрите на эти выражения. Что их объединяет? ( Деление ) (Слайд 7). - Давайте и здесь наведем порядок. - Что общего во всех выражениях? (Все выражения на деление). - Найдем значения этих выражений (по рядам). 56:4 240:60 58:9 49:7 39:5 7200:90

- Молодцы, умело вы справились с заданием. Ловко! 

3.Постановка учебной задачи .(1 мин.) - А теперь посмотрите на слайд и скажите какие записи вы не можете объяснить? (Слайд 8- на слайде схемы умножения в столбик на однозначное число, сложение в столбик трехзначных чисел, вычитание трехзначных чисел и одно деление «уголком»)

/Затруднение!!!/

- Что же вызвало у вас затруднение?

4.Построение проекта выхода из затруднения. Постановка цели. (1-2 мин.)

- Тогда цель нашего сегодняшнего урока? ( Научиться делить многозначное число на однозначное, найти новый способ. ) (Слайд 9). - Сформулируйте тему урока. ( Деление на однозначное число. )

5.Первичное закрепление во внешней речи. (8 – 10 мин).

а) – Давайте будем думать. Может удобно разделить письменно? Некоторые числа легко делить устно.

363:3=(300+60+3)=300:3+60:3+3:3=121

- Иногда подобрать удобные для деления слагаемые бывает сложно. Деление можно выполнить «уголком».

б) – Давайте попробуем составить алгоритм действий. (Слайд 10). - Что нужно сделать в первую очередь? и т.д. (Слайд 11). 1. Найти первое неполное делимое. 2. Определить число цифр в частном. 3. Найти цифры в каждом разряде частного.

Фронтальная работа (с проговариванием вслух) . а) – Теперь попробуйте вы разделить ” уголком ”. Алгоритм деления я буду подсказывать. 76:2 91:7 87:3

б) – Теперь рассмотрим те случаи, когда число сотен меньше делителя. 283:3 в) – Случаи, когда число сотен или десятков делится без остатка. 363: 3 г) – Работа по учебнику с.92 №4 . Физминутка (2 - 3 мин.) 6.Самоконтроль с самопроверкой по эталону (4 – 5 мин.)

- Я думаю, вы теперь самостоятельно сможете выполнить задание. с.92№5 1в-2пр. 2в-3пр. - Обменяйтесь тетрадями проверьте друг у друга. 7.Включение в систему знаний и повторения (4 – 5 мин.)

- Как вы думаете, зачем нам нужно уметь делить многозначные числа на однозначные? - Решим задачу на с.93№6(а) - Выполним краткую запись и решим задачу. Банка тушенки весит 375 г. А банка сгущенного молока в 5 раз легче. На сколько легче банка сгущенного молока?

8.Рефлекия учебной деятельности. (Слайд 12).

- Огромное трудолюбие и ваша тяга к знаниям помогла нам сделать на уроке открытие. - Вспомните, с каких слов мы начали урок? - Чему научились? - Довольны ли вы своей работой? -Я передаю вам памятку с алгоритмом, давайте проведем проверку: • Научились находить первое неполное делимое? • Научились определять количество цифр в частном? • Сумеете найти цифру для каждого разряда, то есть определить цифру в частном? • (Слайд 13). -Если вам все удалось на уроке выбирайте – весёлый смайлик, а если у вас остались неразрешенные проблемы – задумчивый, если вам ещё понадобится помощь- грустный. 9. Домашнее задание. (Слайд 14).

- Вы поняли, что нужно потренировать дома? с.92 №3, с.93 №6(б).

- Молодцы! Спасибо за хорошую работу! (Слайд 15).

infourok.ru

Деление чисел | Формулы с примерами

Что такое деление натуральных чисел?

Формула деленияДеление - это нахождение одного из сомножителей по произведению и другому сомножителю.

Исходное произведение называется делимым, данный сомножитель - делителем, результат - частным.

Варианты обозначений:

Варианты обозначений деления Примеры
4 : 2 = 2;9 : 3 = 3; 12 : 3 = 4;20 : 5 = 4;

Если частное c = a : b не является натуральным числом, то принято говорить, что a не делится (нацело) на b.

Пример
7 : 3 - 7 не делится (нацело) на 3

Свойства деления натуральных чисел

1. a : 1 = a ;

2. a : a = 1 ;

3. a : b = ( a • n ) : ( b • n ) для любого натурального числа n ;

4. ( a : b ) : c = a : ( b • c ) ;

5. a : ( b : c ) = ( a : b ) • c ;

6. ( a • b ) : c = ( a : c ) • b ;

7. ( a • b ) : c = a • ( b : c ) ;

Примеры
10 : 1 = 10;

23 : 23 = 1;

(16 • 2) : (8 • 2) = 16 : 8 = 2;

(3 • 6) : 2 = 3 • (6 : 2) = 3 • 3 = 9.

Деление уголком

Такое деление применяется в случае, когда надо одно число (делимое), разделить на другое целое число (делитель), меньше 10.

Если в результате деления получается целое число и остаток, этот остаток нужно перенести к следующей цифре делимого.

Пример деления уголком

Деление уголком

Объяснение примера деления уголком:

Деление начинаем с левого ряда. Первая цифра 4, на 5 не делится, тогда берем первые два разряда: 48, получаем 9 в первом разряде частного, остаток 3. Добавляем следующий разряд: 36, в частном пишем 7, остаток 1. Далее, к этому остатку добавляем последний разряд делимого: 15. В частном пишем последнюю цифру: 3.

Таблица проверки деления числа на другое без остатка

На Если Примеры
2 Последняя цифра четная 2, 6 ,10, 24, 1000
3 Сумма цифр делится на три 363 + 6 = 9
4 число, образованное из последних двух цифр, делится на 4 211616 x 4 = 4
5 Последняя цифра 5 или 0 10, 20, 35, 1000
6 Последняя цифра четная, а сумма всех цифр делится на 3 6 3246 + 3 + 2 + 4 = 15
9 Сумма цифр делится на 9 81 2798 + 1 + 2 + 7 + 9 = 27
10 Последняя цифра 0 20, 400, 1 700

formula-xyz.ru