Относительная и абсолютная погрешность: определения и отличия. Абсолютная погрешность всех измерений необходима для вычисления


Абсолютная погрешность измерений. Как рассчитать абсолютную погрешность измерений? Определение абсолютной и относительной погрешности прямых измерений

Образование 14 сентября 2017

Физические величины характеризуются понятием «точность погрешности». Есть высказывание, что путем проведения измерений можно прийти к познанию. Так удастся узнать, какова высота дома или длина улицы, как и многие другие.

Введение

Разберемся в значении понятия «измерить величину». Процесс измерения заключается в том, чтобы сравнить её с однородными величинами, которые принимают в качестве единицы.

Для определения объёма используются литры, для вычисления массы применяются граммы. Чтобы было удобнее производить расчеты, ввели систему СИ международной классификации единиц.

За измерение длины вязли метры, массы – килограммы, объёма – кубические литры, времени – секунды, скорости – метры за секунду.

При вычислении физических величин не всегда нужно пользоваться традиционным способом, достаточно применить вычисление при помощи формулы. К примеру, для вычисления таких показателей, как средняя скорость, необходимо поделить пройденное расстояние на время, проведенное в пути. Так производятся вычисления средней скорости.

Применяя единицы измерения, которые в десять, сто, тысячу раз превышают показатели принятых измерительных единиц, их называют кратными.

Наименование каждой приставки соответствует своему числу множителя:

  1. Дека.
  2. Гекто.
  3. Кило.
  4. Мега.
  5. Гига.
  6. Тера.

В физической науке для записи таких множителей используется степень числа 10. К примеру, миллион обозначается как 106.

В простой линейке длина имеет единицу измерения – сантиметр. Она в 100 раз меньше метра. 15-сантиметровая линейка имеет длину 0,15 м.

Линейка является простейшим видом измерительных приборов для того, чтобы измерять показатели длины. Более сложные приборы представлены термометром – чтобы измерять температуру, гигрометром – чтобы определять влажность, амперметром – замерять уровень силы, с которой распространяется электрический ток.

Насколько точны будут показатели проведенных измерений?

Возьмем линейку и простой карандаш. Наша задача заключается в измерении длины этой канцелярской принадлежности.абсолютная погрешность измерений

Для начала потребуется определить, какова цена деления, указанная на шкале измерительного прибора. На двух делениях, которые являются ближайшими штрихами шкалы, написаны цифры, к примеру, «1» и «2».

Необходимо подсчитать, сколько делений заключено в промежутке этих цифр. При правильном подсчете получится «10». Вычтем от того числа, которое является большим, число, которое будет меньшим, и поделим на число, которое составляют деления между цифрами:

(2-1)/10 = 0,1 (см)

Так определяем, что ценой, определяющей деление канцелярской принадлежности, является число 0,1 см или 1 мм. Наглядно показано, как определяется показатель цены для деления с применением любого измерительного прибора.

Измеряя карандаш с длиной, которая немного меньше, чем 10 см, воспользуемся полученными знаниями. При отсутствии на линейке мелкого деления, следовал бы вывод, что предмет имеет длину 10 см. Это приблизительное значение названо измерительной погрешностью. Она указывает на тот уровень неточности, которая может допускаться при проведении измерений.

Определяя параметры длины карандаша с более высоким уровнем точности, большей ценой деления достигается большая измерительная точность, которая обеспечивает меньшую погрешность.

При этом абсолютно точного выполнения измерений не может быть. А показатели не должны превышать размеры цены деления.

Установлено, что размеры измерительной погрешности составляют ½ цены, которая указана на делениях прибора, который применяется для определения размеров.

После выполнения замеров карандаша в 9,7 см определим показатели его погрешности. Это промежуток 9,65 - 9,85 см.

Формулой, измеряющей такую погрешность, является вычисление:

А = а ± D (а)

А - в виде величины для измерительных процессов;

а - значение результата замеров;

D - обозначение абсолютной погрешности.

Если слаживать или вычитать величины с учетом погрешности, это число будет составлять сумму цифр, которые и обозначают погрешность, и имеются у каждой отдельно взятой величины.

При вычитании или складывании величин с погрешностью результат будет равен сумме показателей погрешности, которую составляет каждая отдельная величина.

Видео по теме

Знакомство с понятием

Если рассматривать классификацию погрешностей в зависимости от способа её выражения, можно выделить такие разновидности:

  • Абсолютную.
  • Относительную.
  • Приведенную.

Абсолютная погрешность измерений обозначается буквой «Дельта» прописной. Это понятие определяется в виде разности между измеренными и действительными значениями той физической величины, которая измеряется.

Выражением абсолютной погрешность измерений являются единицы той величины, которую необходимо измерить.

При измерении массы она будет выражаться, к примеру, в килограммах. Это не эталон точности измерений.

Как рассчитать погрешность прямых измерений?

Есть способы изображения погрешности измерения и их вычисления. Для этого важно уметь определять физическую величину с необходимой точностью, знать, что такое абсолютная погрешность измерений, что её никто никогда не сможет найти. Можно вычислить только её граничное значение.

Даже если условно употребляется этот термин, он указывает именно на граничные данные. Абсолютная и относительная погрешность измерений обозначаются одинаковыми буквами, разница в их написании.

При измерении длины абсолютная погрешность будет измеряться в тех единицах, в которых исчисляться длина. А относительная погрешность вычисляется без размеров, так как она является отношением абсолютной погрешности к результату измерения. Такую величину часто выражают в процентах или в долях.

Абсолютная и относительная погрешность измерений имеют несколько разных способов вычисления в зависимости от того, какой метод измерения физических величин.

Понятие прямого измерения

Абсолютная и относительная погрешность прямых измерений зависят от класса точности прибора и умения определять погрешность взвешивания.

Прежде чем говорить о том, как вычисляется погрешность, необходимо уточнить определения. Прямым называется измерение, при котором происходит непосредственное считывание результата с приборной шкалы.

Когда мы пользуемся термометром, линейкой, вольтметром или амперметром, то всегда проводим именно прямые измерения, так как применяем непосредственно прибор со шкалой.

Есть два фактора, которые влияют на результативность показаний:

  • Погрешностью приборов.
  • Погрешностью системы отсчета.

Граница абсолютной погрешности при прямых измерениях будет равна сумме погрешности, которую показывает прибор, и погрешности, которая происходит в процессе отсчета.абсолютная и относительная погрешность измерений

D = D (пр.) + D (отс.)

Пример с медицинским термометром

Показатели погрешности указаны на самом приборе. На медицинском термометре прописана погрешность 0,1 градусов Цельсия. Погрешность отсчета составляет половину цены деления.вычисление абсолютной погрешности измерений

D отс. = С/2

Если цена деления 0,1 градуса, то для медицинского термометра можно произвести вычисления:

D = 0,1oС + 0,1o С / 2 = 0,15o С

На тыльной стороне шкалы другого термометра есть ТУ и указано, что для правильности измерений необходимо погружать термометр всей тыльной частью. Точность измерения не указана. Остается только погрешность отсчета.

Если цена деления шкалы этого термометра равна 2o С, то можно измерять температуру с точностью до 1o С. Таковы пределы допускаемой абсолютной погрешности измерений и вычисление абсолютной погрешности измерений.

Особую систему вычисления точности используют в электроизмерительных приборах.

Точность электроизмерительных приборов

Чтобы задать точность таких устройств, используется величина, называемая классом точности. Для её обозначения применяют букву «Гамма». Чтобы точно произвести определение абсолютной и относительной погрешности измерений, нужно знать класс точности прибора, который указан на шкале.

Возьмем, к примеру, амперметр. На его шкале указан класс точности, который показывает число 0,5. Он пригоден для измерений на постоянном и переменном токе, относится к устройствам электромагнитной системы.

Это достаточно точный прибор. Если сравнить его со школьным вольтметром, видно, что у него класс точности – 4. Эту величину обязательно знать для дальнейших вычислений.

Применение знаний

Таким образом, D c = c (max) Х γ /100

Этой формулой и будем пользоваться для конкретных примеров. Воспользуемся вольтметром и найдем погрешность измерения напряжения, которое дает батарейка.как рассчитать абсолютную погрешность измерений

Подключим батарейку непосредственно к вольтметру, предварительно проверив, стоит ли стрелка на нуле. При подключении прибора стрелка отклонилась на 4,2 деления. Это состояние можно охарактеризовать так:

  1. Видно, что максимальное значение U для данного предмета равно 6.
  2. Класс точности –(γ) = 4.
  3. U(о) = 4,2 В.
  4. С=0,2 В

Пользуясь этими данными формулы, абсолютная и относительная погрешность измерений вычисляется так:

D U = DU (пр.)+ С/2

D U (пр.) = U (max) Х γ /100

D U (пр.) = 6 В Х 4/100 = 0, 24 В

Это погрешность прибора.

Расчет абсолютной погрешности измерений в этом случае будет выполнен так:

D U = 0,24 В + 0,1 В = 0,34 В

По рассмотренной формуле без труда можно узнать, как рассчитать абсолютную погрешность измерений.

Существует правило округления погрешностей. Оно позволяет найти средний показатель между границей абсолютной погрешности и относительной.

Учимся определять погрешность взвешивания

Это один из примеров прямых измерений. На особом месте стоит взвешивание. Ведь у рычажных весов нет шкалы. Научимся определять погрешность такого процесса. На точность измерения массы влияет точность гирь и совершенство самих весов.абсолютная и относительная погрешность измерений формулы

Мы пользуемся рычажными весами с набором гирь, которые необходимо класть именно на правую чашу весов. Для взвешивания возьмем линейку.

Перед началом опыта нужно уравновесить весы. Линейку кладем на левую чашу.

Масса будет равна сумме установленных гирь. Определим погрешность измерения этой величины.пределы допускаемой абсолютной погрешности измерений

D m = D m (весов) + D m (гирь)

Погрешность измерения массы складывается из двух слагаемых, связанных с весами и гирями. Чтобы узнать каждую из этих величин, на заводах по выпуску весов и гирь продукция снабжается специальными документами, которые позволяют вычислить точность.

Применение таблиц

Воспользуемся стандартной таблицей. Погрешность весов зависит от того, какую массу положили на весы. Чем она больше, тем, соответственно, больше и погрешность.

Даже если положить очень легкое тело, погрешность будет. Этот связано с процессом трения, происходящим в осях.

Вторая таблица относится к набору гирь. На ней указано, что каждая из них имеет свою погрешность массы. 10-граммовая имеет погрешность в 1 мг, как и 20-граммовая. Просчитаем сумму погрешностей каждой из этих гирек, взятой из таблицы.

определение абсолютной и относительной погрешности измерений

Удобно писать массу и погрешность массы в двух строчках, которые расположены одна под другой. Чем меньше гири, тем точнее измерение.

Итоги

В ходе рассмотренного материала установлено, что определить абсолютную погрешность невозможно. Можно лишь установить её граничные показатели. Для этого используются формулы, описанные выше в вычислениях. Данный материал предложен для изучения в школе для учеников 8-9 классов. На основе полученных знаний можно решать задачи на определение абсолютной и относительной погрешности.

Источник: fb.ru

monateka.com

Приборная погрешность

Задание №1

По данному прибору представить результат измерения силы тока с оценкой

погрешностей

Задание №2

Запишите данные по прибору и представьте результат измерения напряжения с указанием погрешностей.

Ответ:

В

Для нахождения Погрешностей величины, являющейся функцией других величин, можно воспользоваться готовыми формулами.

формула

абсолютная погрешность

относительная

погрешность

НАПРИМЕР: необходимо оценить погрешность измерения сопротивления ∆ R u, пользуясь вольтметром и амперметром.

Рабочая формула тогда согласно таблице для общих расчетов погрешностей можно найти погрешности измерений сопротивления

∆R u ε

Для расчета погрешности измерения R запишем формулы:

Значения I, ∆ I, U, ∆ U находим по приборам и формулам Следует отметить, что абсолютную погрешность можно найти, используя формулу относительной погрешности

ЗАДАНИЕ

Используя приведенные выше примеры для вольтметра и миллиамперметра на участке цепи с сопротивлением R, оценить погрешность измерения R.

Известно (данные по приборам рис.1,2 и решениям вышеприведённых заданий №1 и №2)

Задача №3

Представить результаты измерений по электроизмерительным приборам и оценить погрешности измерения R (с использованием миллиамперметра и вольтметра)

Вопросы для самопроверки

  1. Что вы знаете о классификации погрешностей?

  2. Как рассчитать абсолютные и относительные погрешности?

  3. Что такое доверительный интервал и доверительная вероятность?

  4. Подчиняются ли погрешности нормальному закону распределения?

Выводы (в соответствии с заданием преподавателя) __________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Работу выполнил студент……………………………..

группа № ………………..

Дата ………………………

Подпись преподавателя………………………………..

ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ТЕСТИРОВАНИЮ ПОГРЕШНОСТИ

1.Коэффициент Стьюдента позволяет определить

  1. дисперсию

  2. доверительную вероятность выполненных измерений

  3. стандартное отклонение

  4. абсолютную погрешность всех измерений

  5. абсолютную погрешность одного измерения

2.Результат измерения длины L = (50±1) см имеет относительную погрешность

1. 2%

2. 1 %

ПОГРЕШНОСТИ 1

3

5

где -частные производные функции, 5

5

6

5.Указать относительную погрешность 6

6

7

8

ОЦЕНКА ПОГРЕШНОСТЕЙ В ЛАБОРАТОРНЫХ ИССЛЕДОВАНИЯХ 9

9

9

10

10

10

11

13

14

6

19

20

22

1. Бернулли 2. Стокса 3. Максвелла

4.Больцмана 5. Гаусса

5.Систематические погрешности зависят от

  1. влияний кратковременных случайных внешних факторов

  2. нормального распределения

  3. внимательности экспериментатора

  4. дефектов прибора

6.Коэффициент Стьюдента позволяет определить

  1. доверительную вероятность

  2. число результатов измерений

  3. стандартное отклонение

  4. доверительный интервал

7.Результаты косвенных измерений получают

  1. при измерении прибором

  2. из расчетов по формуле

  3. сопоставлением данных эксперимента и таблиц

8.Абсолютные погрешности каждого измерения необходимы для вычисления

  1. стандартного отклонения

  2. коэффициента Стьюдента

  3. плотности вероятности

  4. доверительной вероятности

9.Абсолютная погрешность всех измерений необходима для вычисления

  1. плотности вероятности

  2. доверительной вероятности

  3. доверительного интервала

  4. стандартного отклонения

10.Выберите результат измерений длины, выполненный наиболее точно

1. (44,7+1,0) см 2. (44,7+0,1) см 3. (44,7±0,5) см

11.Имеются приборы класса 0,5; 1; 4. Из них наименьшую погрешность имеет прибор класса:

1.0,5 2.1 3. 4

12.Абсолютная погрешность при измерении электроизмерительным прибором вычисляется по формуле

13. Среднеквадратическое значение косвенных измерений определяется по формуле

14. Результат измерений записан в виде х *= (4,8+0,2) , доверительная вероятность 0,95. В таком случае абсолютная погрешность равна

1. 0,1

2.0,2

3. 5

15.Доверительный интервал (40,5±0,1)% показывает, что абсолютная погрешность измерений равна

ПОГРЕШНОСТИ 1

3

5

где -частные производные функции, 5

5

6

5.Указать относительную погрешность 6

6

7

8

ОЦЕНКА ПОГРЕШНОСТЕЙ В ЛАБОРАТОРНЫХ ИССЛЕДОВАНИЯХ 9

9

9

10

10

10

11

13

14

6

19

20

22

Из них является недостоверным результат:

  1. 106

  2. 102

  3. 97

  4. 96

18.Дисперсии результатов двух серий измерений равны:

При этом , а доверительная вероятность одинакова.

Абсолютные погрешности измерений первой и второй серий находятся в следующем соотношении

19.Дисперсии результатов двух серий измерений равны

При этом , но доверительная вероятность а, = 0.95,a доверительная вероятность а2 - 0.99. Абсолютные погрешности

находятся в следующем соотношении

.

20.Результат измерений m = (100±3) кг дает основание считать, что относительная погрешность равна

ПОГРЕШНОСТИ 1

3

5

где -частные производные функции, 5

5

6

5.Указать относительную погрешность 6

6

7

8

ОЦЕНКА ПОГРЕШНОСТЕЙ В ЛАБОРАТОРНЫХ ИССЛЕДОВАНИЯХ 9

9

9

10

10

10

11

13

14

6

19

20

22

21. Для y = f(xnx2…)y доверительный интервал равен

22.Укажите прибор, показывающий результат с большей относительной погрешностью

1.1

2.2

23. Укажите прибор, имеющий меньшую абсолютную погрешность

1.1

2.2

24. Укажите прибор , имеющий меньшую абсолютную погрешность

25.Координаты пузырька воздуха, который всплывает в жидкости, были измерены в различные моменты времени и отмечены точ­ками на каждом из четырех рисунков. Погрешность измерения координаты равна 0,5см, а времени - 0,5с. Правильно с учетом всех результатов измерений и их погрешностей построен график

  1. 1

  2. 2

  3. 3

  4. 4

26- Определите плотность некоторого однородного тела по результатам непосредственно произведенных измерений его массы и объёма: m=(25,4±0,5> 10‘3 кг, V=(2,94±0,05>10'6 м3.

  1. р=(8,64±0,35)-10’ кг/м3

  2. р=(8,00±0,35)-103 кг/м3

  3. р=(8,05±0,35)-103 кг/м3

27- Определите плотность некоторого однородного тела по результатам непосредственно произведенных измерений его массы и объёма: m = (25,4±0,5)-10'3 кг, V = (2,94±0,05)-10‘6 м3. Оцените относительную погрешность

28- Укажите класс точности прибора. Рассчитайте абсолютную иотносительную погрешности. Сделайте корректную запись показания прибора.

29. Укажите класс точности прибора . рассчитайте абсолютную и относительную погрешности. Сделайте корректную запись показания прибора.

30. Укажите класс точности прибора . рассчитайте абсолютную и относительную погрешности. Сделайте корректную запись показания прибора.

Работа выполнена в пределах допустимой погрешности

31 - Размерность абсолютной погрешности

  1. отсутствует (Размерности нет)

  2. соответствует размерности случайной величины

  3. соответствует размерности квадрата случайной величины

32-Размерность среднеквадратической погрешности

  1. отсутствует (Размерности нет)

  2. соответствует размерности случайной величины

  3. соответствует размерности квадрата случайной величины

33-Знак абсолютной погрешности всегда

  1. положительный

  2. отрицательный

  3. такой же, как у случайной величины

34-Выделите правила, которыми следует пользоваться при построении

графиков (выберите правильные ответы)

  1. деления по осям координат должны быть кратны целым единицам, десяткам, сотням и т.д.

    начале координат

  2. масштабы по осям координат не обязательно должны быть одинаковыми

  3. масштабы по осям координат обязательно должны быть одинаковыми

  4. помечать нуль в начале координат не обязательно

  5. обязательно помечать нуль в

  6. При построении графика следует соединять точки в виде ломаной линии, как это показано пунктиром на рис., так как в подавляющем большинстве случаев физический процесс не протекает плавно.

  7. При построении графика кривую проводят по возможности плавно через большинство точек или полосу точек так, чтобы большая часть точек оказалась расположенной по обе стороны кривой и возможно ближе к ней.

35-Экспериментальные данные 5 измерений отмечены знаком. Укажите график, грамотно представленный по данному разбросу точек.

36- Показания термометра можно записать в виде

  1. (36,5 ±1,0)°С

  2. (36,5 ±0,5)°С

  3. (36,5 ±0А)°С

37-По используемому для измерения частоты цифровому прибору полученный результат необходимо записать в виде

  1. (49,99 ± 0,1 )Hz

  2. (49,99 ±0,01) Hz

  3. (49,99 ± 0,99)Hz

38-Относительная погрешность измерения температуры в помещении данным цифровым термометром равна

  1. 2%

  2. 0,4%

  3. 0,5 °С

  4. 0,1 °С

39-Абсолютная погрешность измерения температуры в помещении данным цифровым термометром равна

  1. 2 %

  2. 0,4 %

  3. 0,5 °С

  4. 0,1 °С

На занятии по теории погрешностей студентам предстоит пройти тестирование в компьютерном классе по вопросам

«Теория вероятностен. Статистика. Теория погрешностей»

Схема конвертации баллов, указанных при оценке тестирования 30 вопросовна компьютере

Баллы при тестировании на компьютере

Оценка знаний по пятибалльной шкале

29-30

отлично

26-28

хорошо

22-25

удовлетворительно

0-21

плохо

studfiles.net

Расчет погрешности измерений

3.1 Среднеарифметическая погрешность.Как уже отмечалось раньше, измерения принципиально не могут быть абсолютно точными. Поэтому в ходе измерения возникает задача об определении интервала, в котором вероятнее всего находится истинное значение измеряемой величины. Такой интервал указывают в виде абсолютной ошибки измерения.

Если предположить, что грубые промахи в измерениях устранены, а систематические ошибки сведены к минимуму тщательной настройкой приборов и всей установки и не являются определяющими, то результаты измерений будут, в основном, содержать только случайные погрешности, которые являются знакопеременными величинами. Поэтому, если проведено несколько повторных измерений одной и той же величины, то наиболее вероятным значением измеряемой величины является ее среднеарифметическое значение:

  (1)

 

где ai, - значение отдельных измерений, n - число проведенных измерений.

Погрешностью или абсолютной ошибкой отдельного измерения называют разность между значением, полученным в данном измерении, и среднеарифметическим значением измеряемой величины:

(2)

 

Средней абсолютной ошибкойназывается среднеарифметическое модулей абсолютных ошибок отдельных измерений:

  (3)

При достаточно большом числе измерений случайные ошибки возникают с равной вероятностью как в сторону увеличения, так и в сторону уменьшения измеряемой величины, то есть можно считать, что истинное значение измеряемой величины заключено в интервале

(4)

Последнее неравенство обычно принято записывать как окончательный результат измерения следующим образом:

(5)

где абсолютная погрешность aср должна вычисляться (округляться) с точностью до одной-двух значащих цифр. Абсолютная ошибка показывает, в каком знаке числа содержатся неточности, поэтому в выражении для асроставляют все верные цифры и одну сомнительную. То есть среднее значение и средняя ошибка измеряемой величины должны вычисляться до цифры одного и того же разряда. Например: g = (9,78 ± 0,24) м/с2.

Относительная погрешность.Абсолютная ошибка определяет интервал наиболее вероятных значений измеряемой величины, но не характеризует степень точности произведенных измерений. Например, расстояние между населенными пунктами, измеренное с точностью до нескольких метров, можно отнести к весьма точным измерениям, в то время как измерение диаметра проволоки с точностью до 1 мм, в большинстве случаев будет являться весьма приближенным измерением.

Степень точности проведенных измерений характеризует относительная погрешность.

Средней относительной погрешностьюили просто относительной ошибкой измерения называется отношение средней абсолютной ошибки измерения к среднему значению измеряемой величины:

  (6)

или выраженная в процентах

  (7)

Относительная ошибка является безразмерной величиной и обычно выражается в процентах.

3.2 Погрешность метода или приборная погрешность.Среднеарифметическое значение измеряемой величины тем ближе к истинному, чем больше проведено измерений, при этом абсолютная погрешность измерения с увеличением их числа стремится к значению, которое определяется методом измерения и техническими характеристиками используемых приборов.

Погрешность методаили приборную погрешность можно рассчитать по одноразовому измерению, зная класс точности прибора или другие данные технического паспорта прибора, в котором указывается либо класс точности прибора, либо его абсолютная или относительная погрешность измерения.

Класс точностиприбора выражает в процентах номинальную относительную ошибку прибора, то есть относительную ошибку измерения, когда измеряемая величина равна предельному для данного прибора значению

  (8)

Класс точности указывается на шкале прибора цифрой, обведенной кружочком. Согласно ГОСТу все электроизмерительные приборы разделяются на 8 классов: 0,05; 0,1; 0,2; 0,5; 1.0 1,5; 2,5; 4,0.

Абсолютная погрешность прибора равна предельному для данного прибора значению измеряемой величины, умноженному на класс точности (К) и разделен­ному на 100:

  (9)

Абсолютная погрешность прибора не зависит от значения измеряемой величины.

Относительная погрешность прибора (по определению):

  (10)

откуда видно, что относительная приборная ошибка тем меньше, чем ближе значение измеряемой величины к пределу измерения данного прибора. Поэтому ре­комендуется подбирать приборы так, чтобы измеряемая величина составляла 60 -90% от величины, на которую рассчитан прибор. При работе с многопредельными приборами тоже следует стремиться к тому, чтобы отсчет производился во второй половине шкалы.

При работе с простыми приборами (линейка, мензурка и т.п.), классы точности и погрешности которых не определены техническими характеристиками, абсолютную погрешность прямых измерений принимают равной половине цены деления данного прибора. (Ценой деления называют значение измеряемой величины при показаниях прибора в одно деление).

Приборную погрешность косвенных измеренийможно рассчитать, используя правила приближенных вычислений. В основе вычисления погрешности косвенных измерений лежат два условия (предположения):

1. Абсолютные ошибки измерений всегда очень малы по сравнению с измеряемыми величинами. Поэтому абсолютные ошибки (в теории) можно рассматривать как бесконечно малые приращения измеряемых величин, и они могут быть заменены соответствующими дифференциалами.

2. Если физическая величина, которую определяют косвенным путем, является функцией одной или нескольких непосредственно измеряемых величин, то абсолютная ошибка функции, обусловленная бесконечно малыми приращениями, является также бесконечно малой величиной.

При указанных допущениях абсолютную и относительную погрешность можно рассчитать, используя известные выражения из теории дифференциального исчисления функций многих переменных:

  (11)
  (12)

Абсолютные ошибки непосредственных измерений могут иметь знаки "плюс" или "минус", но какой именно - неизвестно. Поэтому при определении погрешностей рассматривается наиболее невыгодный случай, когда ошибки прямых изме­рений отдельных величин имеют один и тот же знак, то есть абсолютная ошибка имеет максимальное значение. Поэтому при расчете приращений функции f(x1 ,x2 ,…,хn) по формулам (11) и (12) частные приращения должны складываться по абсолютной величине. Таким образом, используя приближение Dхi ≈ dxi, и вы­ражения (11) и (12), для бесконечно малых приращений Dа можно записать:

  (13)
  (14)

 

Здесь: а - косвенно измеряемая физическая величина, то есть определяемая по расчетной формуле, Dа - абсолютная ошибка ее измерения, х1, х2,...хn; Dх1, Dx2,..., Dхn, - физические величины прямых измерений и их абсолютные ошибки соответственно.

Таким образом: а) абсолютная ошибка косвенного метода измерения равна сумме модулей произведений частных производных функции измерения и соответствующих абсолютных ошибок прямых измерений; б) относительная ошибка косвенного метода измерения равна сумме модулей дифференциалов от логарифма натурального функции измерения, определяемой расчетной формулой.

Выражения (13) и (14) позволяют рассчитать абсолютные и относительные погрешности по одноразовому измерению. Заметим, что для сокращения расчетов по указанным формулам достаточно рассчитать одну из погрешностей (абсолютную или относительную), а другую рассчитать, используя простую связь между ними:

(15)

На практике чаще пользуются формулой (13), так как при логарифмировании расчетной формулы произведения различных величин преобразуются в соответствующие суммы, а степенные и показательные функции преобразуются в произведения, что намного упрощает процесс дифференцирования.

Для практического руководства по расчету погрешности косвенного метода измерения можно пользоваться следующим правилом:

Чтобы вычислить относительную ошибку косвенного метода измерения, нужно:

1. Определить абсолютные ошибки (приборные или средние) прямых измерений.

2. Прологарифмировать расчетную (рабочую) формулу.

3. Принимая величины прямых измерений за независимые переменные, найти полный дифференциал от полученного выражения.

4. Сложить все частные дифференциалы по абсолютной величине, заменив в них дифференциалы переменных соответствующими абсолютными ошибками прямых измерений.

5. Используя полученное выражение, рассчитать относительную погрешность.

6. По формуле (15) рассчитать абсолютную ошибку.

Например, плотность тела цилиндрической формы вычисляется по формуле:

  (16)

где m, D, h - измеряемые величины.

Получим формулу для расчета погрешностей.

1. Исходя из используемого оборудования, определяем абсолютные погрешности измерения массы, диаметра и высоты цилиндра (∆m, ∆D, ∆h соответственно).

2. Логарифмируем выражение (16):

3. Дифференцируем:

4. Заменяя дифференциал независимых переменных на абсолютные ошибки и складывая модули частных приращений, получаем:

5. Используя численные значения m, D, h, D, m, h, рассчитываем Е.

6. Вычисляем абсолютную ошибку

где r рассчитано по формуле (16).

Предлагаем самим убедиться, что в случае полого цилиндра или трубки с внутренним диаметром D1и внешним диаметром D2

К расчету ошибки метода измерения (прямого или косвенного) приходится прибегать в случаях, когда многократные измерения либо невозможно провести в одних и тех же условиях, либо они занимают много времени.

Если определение погрешности измерения является принципиальной задачей, то обычно измерения проводят многократно и вычисляют и среднеарифметическую погрешность и погрешность метода (приборную погрешность). В окончательном результате указывают большую из них.

О точности вычислений

Ошибка результата определяется не только неточностями измерений но и неточностями вычислений. Вычисления необходимо проводить так, чтобы их ошибка была на порядок меньше ошибки результата измерений. Для этого вспомним правила математического действия с приближёнными числами.

Результаты измерений – приближённые числа. В приближённом числе все цифры должны быть верными. Последней верной цифрой приближённого числа считается такая цифра, ошибка в которой не превышает одной единицы её разряда. Все цифры от 1 до 9 и 0, если он стоит в середине или в конце числа, называются значащими. В числе 2330 - 4 значащих цифры, а в числе 6,1×102 – только две, в числе 0,0503 – три, так как нули слева от пятёрки незначащие. Запись числа 2,39 означает, что верны все знаки до второго после запятой, а запись в 1,2800 – что верно также и третий и четвёртый знаки. В числе 1,90 три значащих цифры и это значит, что при измерении мы учитывали не только единицы, но и десятые и сотые, а в числе 1,9 – только две значащих цифры и это значит, что мы учитывали целые и десятые и точность этого числа в 10 раз меньше.

 

Правила округления чисел

При округлении оставляют лишь верные знаки, остальные отбрасываются.

1. Округление достигается простым отбрасыванием цифр, если первая из отбрасываемых цифр меньше, чем 5.

2. Если первая из отбрасываемых цифр больше, чем 5, то последняя цифра увеличивается на единицу. Последняя цифра увеличивается также и в том случае, когда первая из отбрасываемых цифр 5, а за ней есть одна или несколько цифр, отличных от нуля.

Например, различные округления числа 35,856 будут: 35,9; 36.

3. Если отбрасываемая цифра 5, а за ней нет значащих цифр, то округление производится на ближайшее чётное число, то есть, последняя сохраняемая цифра остаётся неизменной, если она чётная и увеличивается на единицу, если она нечётная.

Например, 0,435 округляем до 0,44; 0,365 округляем до 0,36.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

zdamsam.ru

Оценка погрешностей результатов измерений - Документ

Оценка погрешностей результатов измерений

  1. Погрешности измерений и их типы

Любые измерения всегда производятся с какими-то погрешностями, связанными с ограниченной точностью измерительных приборов, неправильным выбором, и погрешностью метода измерений, физиологией экспериментатора, особенностями измеряемых объектов, изменением условий измерения и т.д. Поэтому в задачу измерения входит нахождение не только самой величины, но и погрешности измерения, т.е. интервала, в котором вероятнее всего находится истинное значение измеряемой величины. Например, при измерении отрезка времени t секундомером с ценой деления 0,2 с можно сказать, что истинное значение его находится в интервале от с до с. Таким образом, измеряемая величина всегда содержит в себе некоторую погрешность , где и X – соответственно истинное и измеренное значения исследуемой величины. Величина называется абсолютной погрешностью (ошибкой) измерения, а выражение , характеризующее точность измерения, называется относительной погрешностью.

Вполне естественно стремление экспериментатора произвести всякое измерение с наибольшей достижимой точностью, однако такой подход не всегда целесообразен. Чем точнее мы хотим измерить ту ил иную величину, тем сложнее приборы мы должны использовать, тем больше времени потребуют эти измерения. Поэтому точность окончательного результата должна соответствовать цели проводимого эксперимента. Теория погрешностей дает рекомендации, как следует вести измерения и как обрабатывать результаты, чтобы величина погрешности была минимальной.

Все возникающие при измерениях погрешности обычно разделяют на три типа – систематические, случайные и промахи, или грубые ошибки.

Систематические погрешности обусловлены ограниченной точностью изготовления приборов (приборные погрешности), недостатками выбранного метода измерений, неточностью расчетной формулы, неправильной установкой прибора и т.д. Таким образом, систематические погрешности вызываются факторами, действующими одинаковым образом при многократном повторении одних и тех же измерений. Величина этой погрешности систематически повторяется либо изменяется по определенному закону. Некоторые систематические ошибки могут быть исключены (на практике этого всегда легко добиться) путем изменения метода измерений, введение поправок к показаниям приборов, учета постоянного влияния внешних факторов.

Хотя систематическая (приборная) погрешность при повторных измерениях дает отклонение измеряемой величины от истинного значения в одну сторону, мы никогда не знаем в какую именно. Поэтому приборная погрешность записывается с двойным знаком

Случайные погрешности вызываются большим числом случайных причин (изменением температуры, давления, сотрясения здания и т.д.), действия которых на каждое измерение различно и не может быть заранее учтено. Случайные погрешности происходят также из-за несовершенства органов чувств экспериментатора. К случайным погрешностям относятся и погрешности обусловленные свойствами измеряемого объекта.

Исключить случайны погрешности отдельных измерений невозможно, но можно уменьшить влияние этих погрешностей на окончательный результат путем проведения многократных измерений. Если случайная погрешность окажется значительно меньше приборной (систематической), то нет смысла дальше уменьшать величину случайной погрешности за счет увеличения числа измерений. Если же случайная погрешность больше приборной, то число измерений следует увеличить, чтобы уменьшить значение случайной погрешности и сделать ее меньше или одного порядка с погрешностью прибора.

Промахи, или грубые ошибки, - это неправильные отсчеты по прибору, неправильная запись отсчета и т.п. Как правило, промахи, обусловленные указанными причинами хорошо заметны, так как соответствующие им отсчеты резко отличаются от других отсчетов. Промахи должны быть устранены путем контрольных измерений. Таким образом, ширину интервала в котором лежат истинные значения измеряемых величин, будут определять только случайные и систематические погрешности.

2. Оценка систематической (приборной) погрешности

При прямых измерениях значение измеряемой величины отсчитывается непосредственно по шкале измерительного прибора. Ошибка в отсчете может достигать нескольких десятых долей деления шкалы. Обычно при таких измерениях величину систематической погрешности считают равной половине цены деления шкалы измерительного прибора. Например, при измерении штангенциркулем с ценой деления 0,05 мм величина приборной погрешности измерения принимают равной 0,025 мм.

Цифровые измерительные приборы дают значение измеряемых ими величин с погрешностью, равной значению одной единицы последнего разряда на шкале прибора. Так, если цифровой вольтметр показывает значение20,45 мВ, то абсолютная погрешность при измерении равна мВ.

Систематические погрешности возникают и при использовании постоянных величин, определяемых из таблиц. В подобных случаях погрешность принимается равной половине последнего значащего разряда. Например, если в таблице значение плотности стали дается величиной, равной 7,9∙103 кг/м3, то абсолютная погрешность в этом случае равна кг/м3.

Некоторые особенности в расчете приборных погрешностей электроизмерительных приборов будут рассмотрены ниже.

При определении систематической (приборной) погрешности косвенных измерений функциональной величины используется формула

, (1)

где - приборные ошибки прямых измерений величины , - частные производные функции по переменной .

В качестве примера, получим формулу для расчета систематической погрешности при измерении объема цилиндра. Формула вычисления объема цилиндра имеет вид

.

Частные производные по переменным dиh будут равны

, .

Таким образом, формула для определения абсолютной систематической погрешности при измерении объема цилиндра в соответствии с (2. ..) имеет следующий вид

,

где и приборные ошибки при измерении диаметра и высоты цилиндра

3. Оценка случайной погрешности.

Доверительный интервал и доверительная вероятность

Д

Рис. 1

ля подавляющего большинства простых измерений достаточно хорошо выполняется так называемый нормальный закон случайных погрешностей (закон Гаусса), выведенный из следующих эмпирических положений.
  1. погрешности измерений могут принимать непрерывный ряд значений;

  2. при большом числе измерений погрешности одинаковой величины, но разного знака встречаются одинаково часто,

  3. чем больше величина случайной погрешности, тем меньше вероятность ее появления.

График нормального закона распределения Гаусса представлен на рис.1. Уравнение кривой имеет вид

, (2)

где - функция распределения случайных ошибок (погрешностей), характеризующая вероятность появления ошибки , σ – средняя квадратичная ошибка.

Величина σ не является случайной величиной и характеризует процесс измерений. Если условия измерений не изменяются, то σ остается постоянной величиной. Квадрат этой величины называют дисперсией измерений. Чем меньше дисперсия, тем меньше разброс отдельных значений и тем выше точность измерений.

Точное значение средней квадратичной ошибки σ, как и истинное значение измеряемой величины, неизвестно. Существует так называемая статистическая оценка этого параметра, в соответствии с которой средняя квадратичная ошибка равняется средней квадратичной ошибке среднего арифметического . Величина которой определяется по формуле

, (3)

где - результат i-го измерения; - среднее арифметическое полученных значений; n– число измерений.

Чем больше число измерений, тем меньше и тем больше оно приближается к σ. Если истинное значение измеряемой величины μ, ее среднее арифметическое значение, полученное в результате измерений , а случайная абсолютная погрешность , то результат измерений запишется в виде .

Интервал значений от до , в который попадает истинное значение измеряемой величины μ, называется доверительным интервалом. Поскольку является случайной величиной, то истинное значение попадает в доверительный интервал с вероятностью α, которая называется доверительной вероятностью, или надежностью измерений. Эта величина численно равна площади заштрихованной криволинейной трапеции. (см. рис.)

Все это справедливо для достаточно большого числа измерений, когда близка к σ. Для отыскания доверительного интервала и доверительной вероятности при небольшом числе измерений, с которым мы имеем дело в ходе выполнения лабораторных работ, используется распределение вероятностей Стьюдента. Это распределение вероятностей случайной величины , называемой коэффициентом Стьюдента, дает значение доверительного интервала в долях средней квадратичной ошибки среднего арифметического .

. (4)

Распределение вероятностей этой величины не зависит от σ2, а существенно зависит от числа опытов n. С увеличением числа опытов nраспределение Стьюдента стремится к распределению Гаусса.

Функция распределения табулирована (табл.1). Значение коэффициента Стьюдента находится на пересечении строки, соответствующей числу измерений n, и столбца, соответствующего доверительной вероятности α

Таблица 1.

n

α

n

α

0,8

0,9

0,95

0,98

0,8

0,9

0,95

0,98

3

1,9

2,9

4,3

7,0

6

1,5

2,0

2,6

3,4

4

1,6

2,4

3,2

4,5

7

1,4

1,9

2,4

3,1

5

1,5

2,1

2,8

3,7

8

1,4

1,9

2,4

3,9

Пользуясь данными таблицы, можно:

  1. определить доверительный интервал, задаваясь определенной вероятностью;

  2. выбрать доверительный интервал и определить доверительную вероятность.

При косвенных измерениях среднюю квадратичную ошибку среднего арифметического значения функции вычисляют по формуле

. (5)

Доверительный интервал и доверительная вероятность определяются так же, как и в случае прямых измерений.

Оценка суммарной погрешности измерений. Запись окончательного результата.

Суммарную погрешность результата измерений величины Хбудем определять как среднее квадратичное значение систематической и случайной погрешностей

, (6)

где δх – приборная погрешность, Δх – случайная погрешность.

В качестве Х может быть как непосредственно, так и косвенно измеряемая величина.

Окончательный результат измерений рекомендуется представлять в следующем виде

, α=…, Е=… (7)

Следует иметь в виду, что сами формулы теории ошибок справедливы для большого число измерений. Поэтому значение случайной, а следовательно, и суммарной погрешности определяется при малом n с большой ошибкой. При вычислении Δх при числе измерений рекомендуется ограничиваться одной значащей цифрой, если она больше 3 и двумя, если первая значащая цифра меньше 3. Например, если Δх= 0,042, то отбрасываем 2 и пишем Δх=0,04, а если Δх=0,123, то пишем Δх=0,12.

Число разрядов результата и суммарной погрешности должно быть одинаковым. Поэтому среднее арифметическое погрешности должно быть одинаковым. Поэтому среднее арифметическое вычисляется вначале на один разряд больше, чем измерение, а при записи результата его значение уточняется до числа разрядов суммарной ошибки.

4. Методика расчета погрешностей измерений.

Погрешности прямых измерений

При обработке результатов прямых измерений рекомендуется принять следующий порядок выполнение операций.

  1. Проводятся измерения заданного физического параметра nраз в одинаковых условиях, и результаты записываются в таблицу.

  2. Если результаты некоторых измерений резко отличаются по своему значению от остальных измерений, то они как промахи отбрасываются, если после проверки не подтверждаются.

  3. Вычисляется среднее арифметическое из n одинаковых измерений. Оно принимается за наиболее вероятное значение измеряемой величины

. (8)

  1. Находятся абсолютные погрешности отдельных измерений

  2. Вычисляются квадраты абсолютных погрешностей отдельных измерений (Δхi)2

  3. Определяется средняя квадратичная ошибка среднего арифметического

.

  1. Задается значение доверительной вероятности α. В лабораториях практикума принято задавать α=0,95.

  2. Находится коэффициент Стьюдента для заданной доверительной вероятности α и числа произведенных измерений (см.табл.)

  3. Определяется случайная погрешность

.

  1. Определяется суммарная погрешность

.

  1. Оценивается относительная погрешность результата измерений

.

  1. Записывается окончательный результат в виде

, с α=… Е=…%.

5. Погрешность косвенных измерений

При оценке истинного значения косвенно измеряемой величины , являющейся функцией других независимых величин , можно использовать два способа.

Первый способ используется, если величина y определяется при различных условиях опыта. В этом случае для каждого из значений вычисляется , а затем определяется среднее арифметическое из всех значений yi

. (9)

Систематическая (приборная) погрешность находится на основании известных приборных погрешностей всех измерений по формуле. Случайная погрешность в этом случае определяется как ошибка прямого измерения.

Второй способ применяется, если данная функция yопределяется несколько раз при одних и тех же измерений. В этом случае величина рассчитывается по средним значениям . В нашем лабораторном практикуме чаще используется второй способ определения косвенно измеряемой величины y. Систематическая (приборная) погрешность, как и при первом способе, находится на основании известных приборных погрешностей всех измерений по формуле

. (10)

Для нахождения случайной погрешности косвенного измерения вначале рассчитываются средние квадратичные ошибки среднего арифметического отдельных измерений. Затем находится средняя квадратичная ошибка величины y. Задание доверительной вероятности α, нахождение коэффициента Стьюдента , определение случайной и суммарной ошибок осуществляются так же, как и в случае прямых измерений. Аналогичным образом представляется результат всех расчетов в виде

, с α=… Е=…%.

6. Пример оформления лабораторной работы

Лабораторная работа №1

ОПРЕДЕЛЕНИЕ ОБЪЕМА ЦИЛИНДРА

Принадлежности: штангенциркуль с ценой деления 0,05 мм, микрометр с ценой деления 0,01 мм, цилиндрическое тело.

Цель работы: ознакомление с простейшими физическими измерениями, определение объема цилиндра, расчет погрешностей прямых и косвенных измерений.

Порядок выполнения работы

Провести не менее 5 раз измерения штангенциркулем диаметра цилиндра, а микрометром его высоту.

Расчетная формула для вычисления объема цилиндра

,

где d – диаметр цилиндра; h – высота.

Результаты измерений

Таблица 2.

№ измерения

d,

мм

мм

мм2

h,

мм

, мм

, мм2

1

50,15

0

0

12,32

0,05

0,025

2

50,10

0,05

0,025

12,34

0,03

0,09

3

50,20

0,05

0,025

12,41

0,04

0,016

4

50,25

0,10

0,0100

12,36

0,01

0,01

5

50,05

0,10

0,0100

12,42

0,05

0,025

Ср.

50,150

1. Вычисление среднего значения искомой величины. По вычисленным средним значениям диаметра и высоты цилиндра определим среднее значение объема цилиндра

Оценка погрешностей измерения

2.Вычисление систематической (приборной) погрешности

Приборные погрешности прямых измерений

,

Систематическая погрешность при измерении объема

; .

3.Вычисление случайной погрешности. Средне квадратичные погрешности среднего арифметического

; ;

, .

Средняя квадратичная ошибка среднего арифметического значения

;

Доверительная вероятность

Коэффициент Стьюдента

Случайные погрешности прямых измерений

; ,

; .

Случайная погрешность объема цилиндра

; .

4. Вычисление суммарной погрешности

Абсолютная погрешность

; .

5. Относительная погрешность, или точность измерений

; Е = 0,5%.

6. Запись окончательного результата

Окончательный результат для исследуемой величины записывается в виде

, Е = 0,5%.

Примечание. В окончательной записи число разрядов результата и абсолютной погрешности должно быть одинаковым.

6. Графическое представление результатов измерений

Результаты физических измерений очень часто представляют в графической форме. Графики обладают рядом важных преимуществ и ценных свойств:

а) дают возможность определить вид функциональной зависимости и пределы, в которых она справедлива;

б) позволяют наглядно проводить сравнение экспериментальных данных с теоретической кривой;

в) при построении графика сглаживают скачки в ходе функции, возникающие за счет случайных ошибок;

г) дают возможность определять некоторые величины или проводить графическое дифференцирование, интегрирование, решение уравнения и др.

Общие рекомендации по построению графиков

Г

Рис.2

рафики, как правило, выполняются на специальной бумаге (миллиметровой, логарифмической, полулогарифмической). Принято по горизонтальной оси откладывать независимую переменную, т.е. величину, значение которой задает сам экспериментатор, а по вертикальной оси – ту величину, которую он при этом определяет. Следует иметь в виду, что пересечение координатных осей не обязательно должно совпадать с нулевыми значениями x и у. При выборе начала координат следует руководствоваться тем, чтобы полностью использовалась вся площадь чертежа (рис.2.).

На координатах осях графика указываются не только названия или символы величин, но и единицы их измерения. Масштаб по осям координат следует выбирать так, чтобы измеряемые точки располагались по всей площади листа. При этом масштаб должен быть простым, чтобы при нанесении точек на график не производить арифметических подсчетов в уме.

Рис.3

Экспериментальные точки на графике должны изображаться точно и ясно. Точки, полученные при различных условиях эксперимента (например, при нагревании и охлаждении), полезно наносить разными цветами или разными значками. Если известна погрешность эксперимента, то вместо точки лучше изображать крест или прямоугольник, размеры которого по осям соответствуют этой погрешности. Не рекомендуется соединять экспериментальные точки между собой ломаной линией. Кривую на графике следует проводить плавно, следя за тем, чтобы экспериментальные точки располагались как выше, так и ниже кривой, как показано на рис.3.

Рис.4

При построении графиков помимо системы координат с равномерным масштабом применяют так называемые функциональные масштабы. Подобрав подходящие функции x и y, можно на графике получить более простую линию, чем при обычном построении. Часто это бывает нужно при подборе к данному графику формулы для определения его параметров. Функциональные масштабы применяют также в тех случаях, когда на графике нужно растянуть или сократить какой-либо участок кривой. Чаще всего из функциональных масштабов используют логарифмический масштаб (рис.4).

textarchive.ru

Погрешности

ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

В ФИЗИЧЕСКОМ ПРАКТИКУМЕ

Измерения и погрешности измерений

Физика -  наука экспериментальная, это означает, что физические законы устанавливаются и проверяются путем накопления и сопоставления экспериментальных данных. Цель физического практикума заключается в том, чтобы студенты изучили на опыте основные физические явления, научились правильно измерять числовые значения физических величин и сопоставлять их с теоретическими формулами.

Все измерения можно разделить на два вида – прямыеикосвенные.

При прямых измерениях значение искомой величины непосредственно получается по показаниям измерительного прибора. Так, например, длина измеряется линейкой, время по часам и т. д.

Если искомая физическая величина не может быть измерена непосредственно прибором, а посредством формулы выражается через измеряемые величины, то такие измерения называются косвенными.

Измерение любой величины не дает абсолютно точного значения этой величины. Каждое измерение всегда содержит некоторую погрешность (ошибку). Ошибкой называют разность между измеренным и истинным значением.

Ошибки принято делить на систематические и случайные.

Систематической называют ошибку, которая остается постоянной на протяжении всей серии измерений. Такие погрешности обусловлены несовершенством измерительного инструмента (например, смещением нуля прибора) или методом измерений и могут быть, в принципе, исключены из конечного результата введением соответствующей поправки.

К систематическим ошибкам относятся также погрешность измерительных приборов. Точность любого прибора ограничена и характеризуется его классом точности, который, как правило, обозначен на измерительной шкале.

Случайной называется ошибка, которая изменяется в разных опытах и может быть и положительной и отрицательной. Случайные ошибки обусловлены причинами, зависящими как от измерительного устройства, (трение, зазоры, и т. п..), так и от внешних условий (вибрации, колебания напряжения в сети и т.п.).

Случайные ошибки нельзя исключить опытным путем, но их влияние на результат можно уменьшить многократными измерениями.

ВЫЧИСЛЕНИЕ ПОГРЕШНОСТИ ПРИ ПРЯМЫХ ИЗМЕРЕНИЯХ

СРЕДНЕЕ ЗНАЧЕНИЕ И СРЕДНЯЯ АБСОЛЮТНАЯ ОШИБКА.

Предположим, что мы проводим серию измерений величины Х. Из-за наличия случайных ошибок, получаем n различных значений:

Х1, Х2, Х3… Хn

В качестве результата измерений обычно принимают среднее значение

(1)

Разность между средним значением и результатом i – го измерения назовем абсолютной ошибкой этого измерения

В качестве меры ошибки среднего значения можно принять среднее значение абсолютной ошибки отдельного измерения

(2)

Величина называется средней арифметической (или средней абсолютной) ошибкой.

Тогда результат измерений следует записать в виде

(3)

Для характеристики точности измерений служит относительная ошибка, которую принято выражать в процентах

(4)

СРЕДНЯЯ КВАДРАТИЧНАЯ ОШИБКА.

При ответственных измерениях, когда необходимо знать надежность полученных результатов, используется средняя квадратичная ошибка (или стандартное отклонение), которая определяется формулой

(5)

Величина  характеризует отклонение отдельного единичного измерения от истинного значения.

Если мы вычислили по n измерениям среднее значение по формуле (2), то это значение будет более точным, то есть будет меньше отличаться от истинного, чем каждое отдельное измерение. Средняя квадратичная ошибка среднего значенияравна

(6)

где  - среднеквадратичная ошибка каждого отдельного измерения, n – число измерений.

Таким образом, увеличивая число опытов, можно уменьшить случайную ошибку в величине среднего значения.

В настоящее время результаты научных и технических измерений принято представлять в виде

(7)

Как показывает теория, при такой записи мы знаем надежность полученного результата, а именно, что истинная величина Хс вероятностью 68% отличается отне более, чем на.

При использовании же средней арифметической (абсолютной) ошибки (формула 2) о надежности результата ничего сказать нельзя. Некоторое представление о точности проведенных измерений в этом случае дает относительная ошибка (формула 4).

При выполнении лабораторных работ студенты могут использовать как среднюю абсолютную ошибку, так и среднюю квадратичную. Какую из них применять указывается непосредственно в каждой конкретной работе (или указывается преподавателем).

Обычно если число измерений не превышает 3 – 5, то можно использовать среднюю абсолютную ошибку. Если число измерений порядка 10 и более, то следует использовать более корректную оценку с помощью средней квадратичной ошибки среднего (формулы 5 и 6).

УЧЕТ СИСТЕМАТИЧЕСКИХ ОШИБОК.

Увеличением числа измерений можно уменьшить только случайные ошибки опыта, но не систематические.

Максимальное значение систематической ошибки обычно указывается на приборе или в его паспорте. Для измерений с помощью обычной металлической линейки систематическая ошибка составляет не менее 0,5 мм; для измерений штангенциркулем –

0,1 – 0,05 мм; микрометром – 0,01 мм.

Часто в качестве систематической ошибки берется половина цены деления прибора.

На шкалах электроизмерительных приборов указывается класс точности. Зная класс точности К, можно вычислить систематическую ошибку прибора ∆Х по формуле

где К – класс точности прибора, Хпр– предельное значение величины, которое может быть измерено по шкале прибора.

Так, амперметр класса 0,5 со шкалой до 5А измеряет ток с ошибкой не более

Погрешность цифрового прибора равна единице наименьшего индицируемого разряда.

Среднее значение полной погрешности складывается из случайнойисистематическойпогрешностей.

Ответ с учетом систематических и случайных ошибок записывается в виде

ПОГРЕШНОСТИ КОСВЕННЫХ ИЗМЕРЕНИЙ

В физических экспериментах чаще бывает так, что искомая физическая величина сама на опыте измерена быть не может, а является функцией других величин, измеряемых непосредственно. Например, чтобы определить объём цилиндра, надо измерить диаметр D и высоту h, а затем вычислить объем по формуле

Величины Dиhбудут измерены с некоторой ошибкой.Следовательно, вычисленная величина V получится также с некоторой ошибкой. Надо уметь выражать погрешность вычисленной величины через погрешности измеренных величин.

Как и при прямых измерениях можно вычислять среднюю абсолютную (среднюю арифметическую) ошибку или среднюю квадратичную ошибку.

Общие правила вычисления ошибок для обоих случаев выводятся с помощью дифференциального исчисления.

Пусть искомая величина φ является функцией нескольких переменных Х, У, Z…

φ(Х, У, Z…).

Путем прямых измерений мы можем найти величины , а также оценить их средние абсолютные ошибки… или средние квадратичные ошибкиХ, У, Z…

Тогда средняя арифметическая погрешность  вычисляется по формуле

где  - частные производные от φ по Х, У, Z. Они вычисляются для средних значений …

Средняя квадратичная погрешность вычисляется по формуле

Пример. Выведем формулы погрешности для вычисления объёма цилиндра.

а) Средняя арифметическая погрешность.

Величины D и h измеряются соответственно с ошибкой D и h.

Погрешность величины объёма будет равна

б) Средняя квадратичная погрешность.

Величины D и h измеряются соответственно с ошибкой D, h.

Погрешность величины объёма будет равна

Если формула представляет выражение удобное для логарифмирования (то есть произведение, дробь, степень), то удобнее вначале вычислять относительную погрешность. Для этого (в случае средней арифметической погрешности) надо проделать следующее.

1. Прологарифмировать выражение.

2. Продифференцировать его.

3. Объединить все члены с одинаковым дифференциалом и вынести его за скобки.

4. Взять выражение перед различными дифференциалами по модулю.

5. Заменить значки дифференциалов d на значки абсолютной погрешности .

В итоге получится формула для относительной погрешности

Затем, зная , можно вычислить абсолютную погрешность 

 = 

Пример.

Аналогично можно записать относительную среднюю квадратичную погрешность

Правила представления результатов измерения следующие:

  1. погрешность должна округляться до одной значащей цифры:

правильно  = 0,04,

неправильно -  = 0,0382;

  1. последняя значащая цифра результата должна быть того же порядка величины, что и погрешность:

правильно  = 9,830,03,

неправильно -  = 9,8260,03;

  1. если результат имеет очень большую или очень малую величину, необходимо использовать показательную форму записи - одну и ту же для результата и его погрешности, причем запятая десятичной дроби должна следовать за первой значащей цифрой результата:

правильно -  = (5,270,03)10-5,

неправильно -  = 0,00005270,0000003,

 = 5,2710-50,0000003,

 = = 0,0000527310-7,

 = (5273)10-7,

 = (0,5270,003) 10-4.

  1. Если результат имеет размерность, ее необходимо указать:

правильно – g=(9,820,02) м/c2,

неправильно – g=(9,820,02).

Правила построения графиков

1. Графики строятся на миллиметровой бумаге.

2. Перед построением графика необходимо четко определить, какая переменная величина является аргументом, а какая функцией. Значения аргумента откладываются на оси абсцисс (ось х), значения функции - на оси ординат (ось у).

3. Из экспериментальных данных определить пределы изменения аргумента и функции.

4. Указать физические величины, откладываемые на координатных осях, и обозначить единицы величин.

5. Нанести на график экспериментальные точки, обозначив их (крестиком, кружочком, жирной точкой).

6. Провести через экспериментальные точки плавную кривую (прямую) так, чтобы эти точки приблизительно в равном количестве располагались по обе стороны от кривой.

studfiles.net

Относительная и абсолютная погрешность: определения и отличия

Ни одна физическая величина не может быть измерена абсолютно точно. Каждый раз, производя какое-либо измерение и называя полученный результат, можно судить об абсолютной точности полученного значения лишь с некоторой долей вероятности. Причем значение данной вероятности ничтожно мало из-за того, что любое измеренное значение входит в некоторый интервал, который определяет абсолютная погрешность.

В общем случае под погрешностью понимают отклонение полученного значения измеренной величины от ее истинного номинала. Реалии окружающего нас мира таковы, что ни один инструмент, каким бы точным он ни был, не может сообщить абсолютно точное значение. А потому при измерении говорят, что абсолютная погрешность образовала некоторый интервал, и в промежутке между его границами и находится измеренная величина.

Как же определяется интервал, в котором располагается истинное значение измеренной величины? Первый параметр – это точность прибора. В зависимости от технологии изготовления средства измерения, его свойств и характеристик возникает то или иное значение погрешности. Разумеется, чем выше точность прибора при прочих равных условиях, тем он дороже, но при этом и более точный результат измерения он предоставляет наблюдателю. Выбор измерительного средства и его точности зависит от требований решаемой задачи. Не все вычисления требуют высокой точности, а потому важно правильно подобрать прибор таким образом, чтобы полученные результаты не оказывали влияние на общий итог измерения.

Иной параметр, влияющий на точность, – это правильность использования измерительного прибора. Причем он играет весьма важную роль при измерении! Любой человек, проводящий измерения, должен уметь правильно обращаться со средством измерения. Иначе он рискует не только получить некорректные результаты, но и вовсе испортить прибор. Поэтому перед использованием измерительного средства (особенно высокотехнологичного) важно ознакомиться с инструкцией, понять принцип работы и схему настройки устройства,

и только после этого приступать к измерениям.

Третий параметр – это непосредственно снятие показаний приборов. Если устройство оснащено цифровым дисплеем, то абсолютная погрешность по данному критерию равна нулю. В случае же, когда прибор имеет измерительную шкалу, погрешность измерения увеличивается, т.к. наблюдатель может просто-напросто неверно снять показания вследствие физиологических особенностей зрения человека. Как правило, в таких случаях интервал погрешности увеличивается на цену деления устройства.

Последний ключевой параметр связан с методом обработки проведенного измерения. И в первую очередь он зависит от правильности проведения округления полученной величины. Следует заметить, что любое округление уже изначально искажает истинное значение, однако опять же при проведении процедуры обработки результатов важно учитывать, какое влияние на истинность решения задачи имеет применение того или иного метода обработки значения.

Перечисленные выше четыре параметра – лишь внешние, наиболее очевидные факторы, оказывающие влияние на формирование интервала отклонения полученной величины от реальной. В действительности абсолютная погрешность зависит от комплекса параметров, которые в зависимости от типа задачи, влияния среды, типа используемого прибора могут оказывать колоссальное влияние на результаты измерения.

В заключение отметим, как взаимосвязаны относительная и абсолютная погрешность. Первая – это отношение величины абсолютной погрешности к измеренной величине. Поэтому если абсолютная погрешность – это некоторое значение с той же размерностью, что и измеряемая величина, то относительная погрешность показывает, какую долю составляет ошибка от истинного результата величины.

fb.ru

погрешности измерений

 

 

2.2. Погрешности измерений

 

Ни одно измерение не выполняется идеально точно, всегда по различным причинам существует погрешность, т.е. отклонение ре­зультата измерения от истинного значения измеряемой величи­ны. Причиной погрешности может стать несовершенство методики измерения, используемых средств измерений, органов чувств человека-оператора, а также влияние внешних условий.

Все погрешности, не связанные с грубыми ошибками (промахами, возникающими вследствие недосмотра экспериментатора или неисправности аппаратуры), имеют случайную и систематическую составляющие. Случайные погрешности изменяют величину и знак при повторных измерениях одной и той же величины. Значение случайной погрешности измерения невозможно предвидеть и, следовательно, исключить. Для уменьшения их влияния проводят несколько измерений величины  и берут среднее арифметическое из полученных значений.

Систематические погрешности остаются постоянными по величине и знаку или закономерно изменяю­тся при повторных измерениях одной и той же вели­чины. Систематические погрешности разделяются на методические (несовершенство метода измерений; в том числе влия­ние средств измерения на объект, свойство которого изме­ряется), инструментальные (зависящие от погрешности применяемых средств измерений), внешние (обусловленные влиянием условий проведения измерений) и субъективные (обусловленные индивидуальными особенностями оператора).

Различают абсолютную и относительную погрешность измерения.

Под абсолютной погрешностью измерения понимают разность между полученным в ходе измерения и истинным значением физической величины:

                                                                                                                   (2.1)

Без сравнения с измеряемой величиной абсолютная погрешность ничего не говорит о качестве измерения. Одна и та же погрешность в 1 мм при измерении длины комнаты не играет роли, при измерении длины тетради уже может быть существенна, а при измерении диаметра проволоки совершенно недопустима.

Поэтому вводят относительную погрешность, показывающую, какую часть абсолютная погрешность составляет от истинного значения измеряемой величины. Относительная погрешность представляет собой отно­шение абсолютной погрешности к истинному значению измеряемой величины:

                        

                                                                                                                                                                                                                                                                                                                                      (2.2)

Относительная погрешность обычно выражается в процентах.

Результат измерения величины принято записывать в виде:

                   xизм ± Dх,    d=…%.

При записи абсолютной погрешности ее величину округляют до двух значащих цифр, если первая их них является единицей, и до одной значащей цифры во всех остальных случаях. При записи измеренного значения величины последней должна указываться цифра того десятичного разряда, который использован при указании погрешности.

Из формул (2.1) и (2.2) следует, что для нахождения погрешностей измерений необходимо знать истинное значение измеряемой величины. Поэтому этими формулами можно пользоваться только в тех редких случаях, когда проводятся измерения констант, значения которых заранее известны. Цель же измерений, как правило, состоит в том, чтобы найти не известное значение физической величины. Поэтому на практике погрешности измерений не вычисляются, а оцениваются.

В частности, относительную погрешность находят как отно­шение абсолютной погрешности не к истинному, а к измеренному значению величины:

                                                         (2.3)

Способы оценки абсолютной погрешности разные для прямых и косвенных измерений.

Максимальную абсолютную погрешность при прямых измерениях находят как сумму абсолютной инструментальной погрешности и абсолютной погрешности отсчета:                              Dх=Dхприб + Dхотсч                                                                (2.4)

Погрешность отсчета является случайной и устраняется при многократных измерениях. Если же проводится одно измерение, она обычно принимается равной половине цены деления шкалы измерительного прибора.

Обратимся теперь к анализу погрешностей средств измерения. В зависимости от условий применения средств измерения различают основную и дополнительную погрешности. Основная погрешность – это погрешность средств измере­ний, используемых при нормальных условиях; дополнительная погрешность – это погрешность средств измерений, возникающая в результате отклонени­я значения одной или более влияющих величин от нормального значения.

Способ задания пределов допускаемой основной абсолютной погрешности измерительных средств определяется зависимостью погрешности от значения измеряемой величины. Если абсолютная погрешность измерительного прибора не зависит от измеряемой величины, то погрешность называется аддитивной и ее предел может быть выражен одним числом:

Dхмакс приб = ± а                                           (2.5)

Зона погрешности в этом случае ограничена двумя прямыми линиями, параллельными оси абсцисс (рис.2.1а). Источники аддитивной погрешности – трение в опорах, неточность отсчета, дрейф, наводки, вибрации и другие факторы. От этой погрешности зависит наименьшее значе­ние величины, которое может быть измерено прибором.

Если погрешность прибора зависит от измеряемой величины, то она называется мультипликативной и предел допускаемой абсолютной погрешности выражается формулой     Dхмакс  приб  = ± (а + вх),                                          (2.6)

где в – постоянная величина, вх – предельное значение мультипликативной погрешности, а – предельное значение аддитивной погрешности.

Таким образом, мультипликативная погрешность прямо пропорциональна значению измеряемой величины х. Ис­точники мультипликативной погрешности – действие влия­ющих величин на параметры элементов и узлов средств измерений. Зона погрешности при наличии аддитивной и мультипликативной составляющей показана на рисунке 2.1 б.

Инструментальная погрешность электроизмерительных приборов определяется их классом точности. Класс точности (максимальная приведенная погрешность) – это отношение максимальной абсолютной погрешности прибора к пределу измерения величины (полному значению шкалы). Его, как и относительную погрешность, выражают в процентах. Класс точности показывает, сколько процентов максимальная инструментальная погрешность составляет от всей шкалы прибора:

 

 

                                                                                                  (2.7)

 

 

ГОСТом установлено 8 классов точности измерительных приборов: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Зная класс точности прибора и предельное значение измеряемой величины, можно определить абсолютную и относительную инструментальную погрешность измерения:   

                                                                                                                      

                                                                                                         (2.8)      

 

                                                               

                                          

                                                                                                                  (2.9)

 

Из формулы (2.9) видно, что чем ближе значение измеряемой величины к пределу измерения, тем меньше относительная инструментальная погрешность.

У приборов, аддитивная составляющая погрешности ко­торых преобладает над мультипликативной, класс точности выражается одним числом. К таким приборам относится большинство аналоговых стрелочных приборов. Относительная инструментальная погрешность в этом случае находится просто по формуле (2.9).

Класс точности средств измерения, у которых аддитив­ная и мультипликативная составляющие основной погреш­ности соизмеримы, обозначается двумя числами, разделен­ными косой чертой: c/d. Причем класс точности должен удовлет­ворять условию c/d>l. К приборам, класс точности которых выражается дробью, относятся цифровые показывающие приборы. Их максимальная относительная погрешность определяется по формуле:

                                                                                                                     (2.10)

 

 

 

Для сравнения погрешностей измерения цифровых и стрелочных измерительных приборов постройте самостоятельно график зависимости относительной погрешности измерения постоянного напряжения от его величины приборами АВО-63 и Щ4313 на пределе 2В.

Класс точности или максимальная инструментальная погрешность приборов обычно приводится в его паспорте. Для менее точных приборов, если в паспорте ничего не указано, максимальная инструментальная погрешность принимается равной половине цены или цене деления шкалы.

Для прямых измерений сначала оценивается абсолютная погрешность, а затем относительная. При оценке погрешности косвенных измерений величины поступают следующим образом. Сначала находят абсолютные погрешности величин, полученных в ходе прямых измерений. Затем вычисляют относительную погрешность исследуемой величины, пользуясь для этого одной из формул, приведенных в таблице "расчет погрешностей". Формула относительной погрешности зависит от того, по какой формуле находят значение измеряемой величины. И только после этого находят абсолютную погрешность измеряемой величины, выражая ее из формулы (2.3).

ivatv.narod.ru