Универсальный усилитель для электретного микрофона. Микрофонный усилитель для динамического микрофона


Микрофонный усилитель

Простой микрофонный усилитель для компьютера своими руками

Это статья посвящена конструкции простого микрофонного усилителя, который можно использовать для усиления сигнала электретного или динамического микрофона.

При минимальном количестве деталей, такой усилитель позволяет улучшить соотношение сигнал/шум и увеличить усиление сигнала микрофона по сравнению с усилителем встроенной аудиокарты. http://oldoctober.com/

Всё собираюсь записать свой первый видео урок. Уже изготовил микрофон-клипсу. Но, первая же попытка записать голос споткнулась о невероятно высокие шумы и недостаточный коэффициент усиления микрофонного усилителя встроенной аудио карты.

Самые интересные ролики на Youtube

Близкие темы.

Как сделать простой направленный стерео микрофон из всякого хлама?

Самодельный микрофон для записи видеороликов на цифровую фотокамеру.

Как самому изготовить электретный микрофон для компьютера?

Как припаять штекер к экранированному аудио кабелю.

При отключении режима «Microphone Boost», удалось снизить шумы, но уровень усиления стал таким низким, что записать что-либо стало невозможно.

Я уже было решил купить отдельную аудио карту, но обнаружилось, что хорошая аудио карта стоит очень дорого, а бюджетная за 10$, хотя и имеет более низкий уровень шумов, но также обладает микрофонным усилителем с не очень высоким коэффициентом усиления.

Так что, взялся я за изготовление простенького микрофонного усилителя.

Первые же опыты с макетами микрофонных усилителей показали, что уровень шумов можно снизить, а усиление повысить.

Остаётся только диву даваться тому, как умудряются разработчики компьютерного железа выдавать на гора такие "перлы", тогда как всего несколько копеечных деталей решают проблему шума и усиления.

Конструкция и детали.

При выборе схемы усилителя, я ориентировался в основном на простоту эксплуатации и минимальное количество деталей затраченных на постройку. Задача изготовить супер-пупер усилитель с рекордными показателями не ставилась.

После макетирования нескольких схем на совдеповских микросхемах, я остановился на микросхеме К538УН3А (КР538УН3А). http://oldoctober.com/

Причины следующие:

  1. Минимальное количество навесных элементов.
  2. Однополярное питание. Не нужно городить фантомную землю.
  3. Низкое напряжение питания – 6 Вольт. Легко применить питание от батареи.
  4. Микросхема продолжает работать при снижении напряжения питания до 3-х Вольт. Не нужен стабилизатор напряжения питания и батарею можно использовать более длительное время.
  5. Защита от короткого замыкания. Важно при использовании Джеков 3,5мм! В момент вставки штекера в гнездо происходит короткое замыкание контактов.
  6. Потребляемый ток не превышает 5мА. Если установить пару литий-ионных элементов питания, например, DL123A или одну батарею CR-P2, то их хватит как раз до того момента, когда вся современная техника морально устареет.

Почему именно DL123A (CR-P2)? Из-за токсичной начинки, корпуса этих элементов изготавливают из нержавеющей стали и тщательно герметизируют, что исключает разрушение корпуса и повреждение схемы усилителя. Последнее часто случается при использовании солевых и щелочных (алкалиновых) элементов. (Алкалайновые элементы GP повредили мой любимый Maglite).

Технические параметры К538УН3А.

Ниже публикую технические данные взятые из бумажного справочника по аналоговым микросхемам, так как в сети не нашёл подробной информации об этой микросхеме.

Микросхема представляет собой сверхмалошумящий широкополосный усилитель сигналов частотой до 3МГц. Шумовые характеристики усилителя оптимизированы для работы с низкоомными генераторами сигналов. Коэффициент усиления фиксирован внутренним делителем, но имеется возможность его внешней регулировки. Усилитель предназначен для применения в качестве предварительного усилителя воспроизведения в аппаратуре высшего класса, а также в качестве усилителя для низкоомных датчиков. Корпус 2101.8-1 (DIP8) или 301.8-2.

Электрические параметры.

Номинальное напряжение питания – +6В.

Ток потребления при Uп = 6В, Т = -45… +70С, не более – 5мА.

Коэффициент усиления напряжения с внутренней обратной связью при Uп = 6В, f = 1МГц, Uвх. = 1мВ, Rн = 10кОм, Т = +25С:

не менее – 200,

не более 300,

типовое значение – 250.

Коэффициент усиления напряжения без внутренней обратной связи при Uп = 6В, f = 1МГц, Uвх = 1мВ, Rн = 10кОм, Т = +25С, типовое значение – 3000.

Нормированное напряжение собственного шума при Uп = 6В, f = 1МГц, Uвх = 1мВ, Rг = 500Ом, Rн. = 10кОм, Т = +25С, не более – 5нВ/√Гц, типовое значение – 2,1нВ/√Гц.

Максимальное выходное напряжение Uп = 6В, Rн = 2кОм, Кг = ≤ 10%, Т = -45С, не менее 0,5В, типовое значение – 1В.

Верхняя частота среза при Uп = 6В, Rн = 2кОм, Kу = 100, Т = +25С, типовое значение – 3МГц.

Входное сопротивление – 10кОм.

Предельные эксплуатационные данные.

Максимальное напряжение питания – 7,5В.

Максимальное входное напряжение – 200мВ.

Минимальное сопротивление нагрузки (кратковременное) – 0 Ом.

Температура окружающей среды, длительное воздействие: –45… +70С, кратковременное воздействие: –60… +125С.

Назначение выводов микросхемы К538УН3А.

Корпус 2101.8-1.

  1. Питание.
  2. Не используется.
  3. Коррекция.
  4. Вход.
  5. Вывод регулировки коэффициента усиления.
  6. Подключение фильтра ОС по постоянному току.
  7. Общий.
  8. Выход.

Корпус 301.8-2.

Несколько устаревший вариант исполнения микросхемы.

Типовая схема включения микросхемы.

  1. C2 – фильтр питания.
  2. C5 – разделительный.
  3. C6 – корректирующий.
  4. C8 – фильтр ОС по постоянному току.
  5. R4 – регулировка ОС по переменному току.

Схема универсального микрофонного усилителя.

Представленная схема микрофонного усилителя может усиливать сигнал, как электретного, так и динамического микрофона.

Величина резистора R4 определяет коэффициент усиления микросхемы DA1.

Максимальный коэффициент усиления достигается при R4 = 0.

Для оперативной регулировки и ограничения уровня входного сигнала при перегрузке используется потенциометр R3.

Резистор R2, диод VD2 и светодиод HL1 представляют собой делитель напряжения, на котором формируется 2,2В для питания электретного микрофона. Резистор R1 является нагрузкой электретного микрофона. Светодиод HL1 также осуществляет функцию индикатора питания.

Схема предварительного усилителя для динамического микрофона.

Схему можно значительно упростить, если рассчитывать только на использование динамического микрофона. Нужно только иметь в виду, что при использовании пассивного динамического микрофона с малой чувствительностью, может понадобиться увеличить коэффициент усиления, что приведёт к некоторому повышению уровня шумов микрофонного усилителя.

Печатные платы.

На изображениях печатных плат, представлен вид со стороны элементов. Дорожки просвечиваются сквозь плату.

На картинке пример разводки печатной платы универсального микрофонного усилителя.

  1. Вход.
  2. Верхний по схеме конец потенциометра R3.
  3. Движок потенциометра R3.
  4. Анод светодиода HL1.
  5. Корпус.
  6. Питание +6В.
  7. Выход.
  8. Корпус.

Пример разводки печатной платы усилителя динамического микрофона.

  1. Вход.
  2. Корпус.
  3. Питание +6В.
  4. Выход.
  5. Корпус.

Сам я изготовил печатную плату исходя из размеров имеющихся в моём распоряжении элементов управления и корпуса.

Ссылка на чертежи печатных плат в конце статьи.

Корпус.

Для размещения конструкции хорошо бы выбрать металлический корпус. Если используется пластмассовый корпус, то всю конструкцию желательно поместить в экран. Экран можно изготовить из жести консервной банки от сгущенного молока. Эти банки всё ещё покрывают оловом, и они прекрасно паяются (их даже не нужно лудить). И вкусно и полезно… для самодельщика. Корпус регулятора уровня сигнала должен соединяться с экраном всего усилителя.

На картинке корпус из дюралюминия и печатная плата в сборе. На плате два независимых усилителя с раздельным управлением питанием. Чтобы можно было записать стерео сигнал с использованием двух произвольных микрофонов, усилитель каждого канала снабжён отдельным входным гнёздом.

Элементы управления установлены прямо на печатной плате. Регулировка коэффициента усиления осуществляется один раз путём подбора постоянных резисторов при настройке усилителя.

Микрофонный усилитель в сборе. Микрофонный усилитель соединяется с компьютером экранированным кабелем, на конце которого находится разъём Джек 3,5мм (Jack 3,5mm).

Сравнительные испытания.

При сравнительном испытании, регуляторы устанавливались в такое положение, которое бы обеспечило одинаковый уровень записанного сигнала, как при использованием микрофонного усилителя, так и без него.

Зелёный - уровень шума.

Малиновый - вид шума.

На графике уровень шумов микрофонного усилителя встроенной аудио карты в режиме «Microphone Boost».

Уровень записи – 1,0.

Уровень шума около -80Дб.

Для того чтобы получить минимальный уровень шумов, я установил максимальный уровень сигнала резистором R3. Это позволило использовать усилитель линейного входа аудио карты с небольшим уровнем усиления.

На этом графике уровень шумов самодельного микрофонного усилителя.

Уровень записи 0,05.

Уровень шума около -110Дб.

Драйверы аудиокарат обычно не позволяют устанавливать уровень записи с такой высокой точностью.

Установить уровень записи с точностью до долей процента можно с помощью бесплатного портативного аудиоредактора Audacity, ссылка на который есть в «Дополнительных материалах».

Саму запись или трансляцию звука можно производить при помощи любых других программ.

Как правильно подключить динамический микрофон к кабелю.

Имея в наличии стерео микрофон от старого катушечного магнитофона, я хотел было записать стерео звук. Но, не тут то было…

Чувствительность динамических микрофонов уступает чувствительности электретных, что предъявляет к первым повышенные требования по экранированию от помех и наводок. Однако эти требования часто игнорируются производителем. Именно так обстояло дело с моими микрофонами. Подключены к кабелю они были по-разному, но каждый неправильно по-своему.

  1. Корпус.
  2. Вывод катушки.
  3. Вывод катушки.

На рисунке видно, что у левого микрофона вообще оказался не подключенным корпус, а у правого, один из выводов катушки был подключен к корпусу. Оба эти подключения выполнены неправильно, особенно если учесть, что был применён кабель с экранированной витой парой.

На картинке показано, как правильно подключить динамический микрофон к микрофонному усилителю с асимметричным входом.

А это подключение микрофона к микрофонному усилителю с симметричным входом.

Наиболее дешёвые динамические микрофоны подключают с использованием однопроводного экранированного кабеля. На рисунке схема такого подключения.

Если вы слышите наводки в виде фона с частотой 50Гц, то микрофон лучше подключить с использованием экранированной витой пары.

Пунктирной линией на схемах показан металлический корпус микрофона, который следует соединить с экранирующий оплёткой кабеля. Выводы катушки нужно соединить с витой парой. Не все бюджетные динамические микрофоны позволяют это сделать безболезненно. Часто один из проводов катушки уже подключен к металлическому корпусу микрофона.

Не пытайтесь самостоятельно перепаивать провод катушки к другому контакту. Катушка намотана проводом 0,05мм и тоньше. Для сравнения - толщина волоса человека 0,03-0,04мм. Любое неосторожное касание выводов катушки неминуемо приведёт к обрыву. Кроме того, выводы катушки дополнительно покрывают клеем, что также усложняет задачу.

Ура! Заработало!

Пятисекундная стерео запись сделанная при помощи двух динамических микрофонов и самодельного микрофонного усилителя. (Нужно кликнуть по картинке).

Величина резистора в цепи обратной связи R4 = 50 Ом.

Уровень сигнала микрофонного усилителя - максимум.

Уровень записи по линейному входу аудио карты = 0,2.

Дополнительные материалы (Download).

Отсюда можно скачать чертежи печатных плат в формате lay (34kB).

А здесь лежит программа Sprint Layout 6.0 (с набором макросов), в которой можно открыть, отредактировать и вывести на печать чертежи в формате lay6 (17МБ).

Изготовить печатные платы проще всего способом ЛУТ. Некоторые разновидности этой технологии описаны здесь и здесь.

oldoctober.com

Универсальный усилитель для электретного микрофона

Данный универсальный микрофонный усилитель может работать с двух и трех выводными электретными микрофонами. Хорошее качество звука достигается за счет использования элементов с добротными характеристиками: танталовые конденсаторы и малошумящий ОУ NE5532.

Основные параметры усилителя:

  • нелинейные искажения: <0,09% (при максимальном усилении)
  • частотный диапазон: >25 кГц
  • возможность регулировки усиления в диапазоне 0,9...100
  • регулировка усиления
  • напряжение питания: 7...24 В
  • размеры платы: 30×45 мм

Принципиальная схема микрофонного усилителя показана ниже.Как видно, схема питается от однополярного источника. Дополнительная цепь R1, C1, R2 предусмотрена для питания электретного (трехвыводного) микрофона.

 

Схема включает в себя два каскада с регулируемым коэффициентом усиления. Усиление первого каскада (DD1.1) плавно регулируется потенциометром RР1 в диапазоне 1 ... 10 раз. Усиление второго каскада (DD1.2) может быть изменено ступенчато перемычкой JP3.

Если штифты JP3 не закорочены, то получаем самый большой коэффициент усиления, который определяется соотношением резисторов R9/R7.

При установки перемычки JP3, параллельно R9 подключаются резисторы R11 или R10. При этом коэффициент усиления будет уменьшен. Параллельное соединение R10 (9,1к) с резистором R9 (22к) дает общее сопротивление 6,4k, которое в 3,2 раза больше, чем общее сопротивление R11 и R9 и 3,4 раза меньше, чем сопротивление R9.

При данных значения резисторов, усиление второго каскада будет иметь следующие значения: в 10 раз (без перемычки), в 2,9 раза (с R10), в 0,91 раза (с R11). Таким образом, общий коэффициент усиления можно точно выбрать в диапазоне 0,9...100 раз. Этот диапазон более чем достаточен, чтобы работать с обычными динамическими микрофонами.

Но если необходимо увеличить максимальное усиление до 600 раз (55dB), можно уменьшить сопротивление резистора R3 (360). Это позволит поднять коэффициент усиления первого каскада до 28 раз. Так же можно уменьшить значение R5 (до 1к), тем самым усиление второго каскада возрастет до 22 раз

В схеме намеренно использовано два каскада усиления, что обеспечивает большой прирост усиления и широкую полосу пропускания. Измерения показали, что даже при самом большом коэффициенте усиления (100 раз или 40дБ) частотный диапазон составляет более 25 кГц. Нелинейные  искажения при этом незначительны.

Схема так же будет хорошо работать и с популярными операционными усилителями TL072 и TL082. Правда эти усилители имеют больше шума, но при работе с электретным микрофоном это не критично, поскольку сигнал от такого типа микрофона достаточно сильный.

В случае применения TL072 и TL082 ток потребления составит около 3 мА (10мА с NE5532), что очень важно в случае питания схемы от батареи. Дальнейшее сокращение энергопотребления возможно при использовании ОУ TL062. При этом ток потребления снизится до примерно 0,5 мА, а благодаря двум степеням усиления, даже при максимальном усилении, полоса пропускания будет не ниже чем 20кГц.

Усилитель собран на небольшой печатной плате размером 30×45 мм.

Под операционный усилитель желательно поставить панельку, это позволит поэкспериментировать с разными типами ОУ. К разъему JP2 можно подключить дополнительный переменный резистор для плавной настройки.

Поскольку микрофонный усилитель очень чувствительный и может «собирать» различные помехи, его необходимо подключать с помощью экранированного провода.

Печатная плата (10,8 Kb, скачано: 684)

www.joyta.ru

Предусилитель для динамического микрофона — Меандр — занимательная электроника

-У Вас компьютер есть? А караоке?

- Все есть, только купленный "для караоке" микрофон почему-то плохо работает, наверно неисправен.

К сожалению, аналогичный диалог легко может случиться.

Причина в том, что представленные на рынке в большом ассортименте микрофоны, хорошие динамические микрофоны, имеют низкую чувствительность.

Микрофонный вход звуковых карт рассчитан на использование электретных  микрофонов, имеющих очень большую чувствительность.

Для сравнения, чувствительность динамических микрофонов (1...5)мВ/Па, а электретных (10...50)мВ/Па, и более.

Даже при использовании электретных микрофонов, иногда, требуется увеличение чувствительности микрофонного входа звуковой карты.

Наиболее простой, а может быть и единственный, способ разрешить возникшие проблемы - применить предусилитель, микрофонный предусилитель.

Самая простая принципиальная схема  и соответствующая ей монтажная  представлены ниже.

R1 - 10кОм;R2 - 3,9кОм, подбирать при регулировке;С1 - 5мкФ;VT1 - транзистор КП303А.

Примечание - здесь и далее сетка - 2,5мм.

Рис.1

После сборки, подключив предусилитель к микрофонному входу звуковой карты, необходимо проверить напряжение постоянного тока на выходе (они же контакты для питания) предусилителя. Напряжение должно быть от 2 до 3 В, номинальное значение 2,5 В, иначе подобрать резистор R2.

На разъеме для подключения к звуковой карте, если он "стерео", необходимо соединить оба "сигнальных" контакта.

Элементы схемы определены из расчета, что резистор на входе звуковой карты имеет номинал около 13 кОм (два параллельно соединенных  канала, левый и правый).

Коэффициент передачи предусилителя около 20. Зависит от параметров транзистора и сопротивления резистора на входе звуковой карты (на схеме без позиционного обозначения), для транзистора КП303А

Ku=S*R=(1...4)*13=(13...52)

где S - крутизна вольтамперной характеристики, (1...4)мА/В,

R - сопротивление параллельно соединенных резисторов на входе звуковой карты, 13 кОм.

Недостатки. Схема неработоспособна с электретными и другими нединамическими микрофонами. При некотором стечении неблагоприятных факторов, могут быть повышенные (но едва заметные "на слух") нелинейные искажения. Низкая температурная стабильность, при эксплуатации в "комнатных условиях" неактуально, низкая повторяемость коэффициента усиления "по образцам".

Преимущество этой схемы в том, что она не требует собственного источника питания и, конечно, простота.

"Конструкция выходного дня" представлена на фотографии. Монтаж выполнен "на рыбе", плата из двухстороннего фольгированого текстолита с изоляционными прорезями по фольге. Резисторы - SMD-компоненты. Кабели крепятся к плате с помощью "самолета" из белой жести, пайкой. Для исключения нежелательного электрического контакта элементов предусилителя, его необходимо поместить в корпус их изоляционного материала. Или обернуть скотчем.

Не смотря на простоту, даже примитивность, с успехом эксплуатируется мною много лет, (микрофон YAMAHA Y-907, Audio port M/B EliteGroup K7S5A).

Рис.2

Следующая схема немного сложнее, но значительно лучше.

R1 - 10кОм;R2 - 3,9кОм, подбирать при регулировке;R3 - 750 Ом;С1 - 5мкФ;

VT1 - транзистор КП303А;

VT2 -транзистор КТ3107Б.

Рис.3

Эта схема, в отличии от предыдущей, не имеет заметных нелинейных искажений, имеет большую температурную и другую стабильность. Имеет возможность устанавливать, при регулировке, необходимый коэффициент усиления в диапазоне (3...?) (подбором резистора R3). Естественно, чем больше усиление, тем больше нестабильность и нелинейные искажения.

Регулировка аналогична предыдущему.

 В случае, если при эксплуатации микрофона наблюдается "бубнение", рекомендую уменьшить номинал конденсатора C1 до 1 мкФ. При этом повысится нижняя граничная частота предусилителя, т.е. будет исключено усиление низких частот.

fluct.narod.ru

meandr.org

Сделай сам - Предусилитель для динамического микрофона

Предусилитель для динамического микрофона

-У Вас компьютер есть? А караоке?

- Все есть, только купленный "для караоке" микрофон почему-то плохо работает, наверно неисправен.

К сожалению, аналогичный диалог легко может случиться.

Причина в том, что представленные на рынке в большом ассортименте микрофоны, хорошие динамические микрофоны, имеют низкую чувствительность.

Микрофонный вход звуковых карт рассчитан на использование электретных  микрофонов, имеющих очень большую чувствительность.

Для сравнения, чувствительность динамических микрофонов (1...5)мВ/Па, а электретных (10...50)мВ/Па, и более.

Даже при использовании электретных микрофонов, иногда, требуется увеличение чувствительности микрофонного входа звуковой карты.

Наиболее простой, а может быть и единственный, способ разрешить возникшие проблемы - применить предусилитель, микрофонный предусилитель.

Самая простая принципиальная схема  и соответствующая ей монтажная  представлены ниже.

R1 - 10кОм;

R2 - 3,9кОм, подбирать при регулировке;

С1 - 5мкФ;

VT1 - транзистор КП303А.

Примечание - здесь и далее сетка - 2,5мм.

Рис.1

После сборки, подключив предусилитель к микрофонному входу звуковой карты, необходимо проверить напряжение постоянного тока на выходе (они же контакты для питания) предусилителя. Напряжение должно быть от 2 до 3 В, номинальное значение 2,5 В, иначе подобрать резистор R2.

На разъеме для подключения к звуковой карте, если он "стерео", необходимо соединить оба "сигнальных" контакта.

Элементы схемы определены из расчета, что резистор на входе звуковой карты имеет номинал около 13 кОм (два параллельно соединенных  канала, левый и правый).

Коэффициент передачи предусилителя около 20. Зависит от параметров транзистора и сопротивления резистора на входе звуковой карты (на схеме без позиционного обозначения), для транзистора КП303А

Ku=S*R=(1...4)*13=(13...52)

где S - крутизна вольтамперной характеристики, (1...4)мА/В,

R - сопротивление параллельно соединенных резисторов на входе звуковой карты, 13 кОм.

Недостатки. Схема неработоспособна с электретными и другими нединамическими микрофонами. При некотором стечении неблагоприятных факторов, могут быть повышенные (но едва заметные "на слух") нелинейные искажения. Низкая температурная стабильность, при эксплуатации в "комнатных условиях" неактуально, низкая повторяемость коэффициента усиления "по образцам".

Преимущество этой схемы в том, что она не требует собственного источника питания и, конечно, простота.

"Конструкция выходного дня" представлена на фотографии. Монтаж выполнен "на рыбе", плата из двухстороннего фольгированого текстолита с изоляционными прорезями по фольге. Резисторы - SMD-компоненты. Кабели крепятся к плате с помощью "самолета" из белой жести, пайкой. Для исключения нежелательного электрического контакта элементов предусилителя, его необходимо поместить в корпус их изоляционного материала. Или обернуть скотчем.

Не смотря на простоту, даже примитивность, с успехом эксплуатируется мною много лет, (микрофон YAMAHA Y-907, Audio port M/B EliteGroup K7S5A).

Рис.2

Следующая схема немного сложнее, но значительно лучше.

R1 - 10кОм;

R2 - 3,9кОм, подбирать при регулировке;

R3 - 750 Ом;

С1 - 5мкФ;

VT1 - транзистор КП303А;

VT2 -транзистор КТ3107Б.

Рис.3

Эта схема, в отличии от предыдущей, не имеет заметных нелинейных искажений, имеет большую температурную и другую стабильность. Имеет возможность устанавливать, при регулировке, необходимый коэффициент усиления в диапазоне (3...?) (подбором резистора R3). Естественно, чем больше усиление, тем больше нестабильность и нелинейные искажения.

Регулировка аналогична предыдущему.

 В случае, если при эксплуатации микрофона наблюдается "бубнение", рекомендую уменьшить номинал конденсатора C1 до 1 мкФ. При этом повысится нижняя граничная частота предусилителя, т.е. будет исключено усиление низких частот.

Источник сайт: fluct.narod.ru

sam.tibro.ru

Создаем усилитель для микрофона и сам микрофон

Создать микрофон для компьютера или камеры совсем не сложно. Но далеко не каждый микрофон способен добиться нужного результата в определенной ситуации. Например потому что микрофон элементарно нечувствительный.

В таком случае нужно самому собрать маленький усилитель для микрофона который не требует питания. Даже для любителей не составит труда собрать его.

Материалы и инструменты:- Паяльник- олово и канифоль- транзистор КТ3102.- Микрофон со старого магнитофона МКЭ-3 (или любой другой похожий по размеру).- Резистор, конденсатор и транзистор со старых эл. схем- провод- штекер 3,5 мм- корпус для микрофона- Изолента

Подробное описание изготовления:В качестве самого усилителя используется транзистор КТ3102. Схема довольно простенькая и показана на рисунке. Микрофон взят МКЭ-3, который был вытащен из старого магнитофона Весна. Из него выходят 3 провода, один из них нам не понадобится.Из микрофона выходят 3 провода - желтый, голубой и красный. Именно красный не нужен и использоваться не будет. После того как его обрезают можно будет укоротить два остальных провода как показано на фото.Провод для этого микрофона был взят из переходника к магнитофону. В данном виде провода есть три проводка. Тут как и выше третий лишний, поэтому используется только два из них. С обеих сторон зачищается каждый проводок.К заготовленному проводу припаивается штекер как показано на схеме усилителя, но для начала нужно обработать каждый проводок канифолью с оловом.После спайки нужно изолировать провод изолентой.Дальше собирается сам усилитель как показано на схеме. Подготавливается несколько зачищенных с двух сторон проводков. Далее припаивается каждая деталь как изображено на схеме усилителя. Спаивается так что бы усилитель получился минимальным по размеру, для того что бы не использовать большой корпус. Расположение контактов транзистора показано на схеме. При спайке лучше долго не нагревать его контакты. На фото показан усилитель уже спаянный с микрофоном.Корпусом тут служит корпус снятый со старого штекера звукоснимателя. Использовать можно и покрасивее если у вас имеется в наличии.Далее провод просовывается в корпус как показано на фото.Зачищенные проводки припаиваются как в схеме, и в итоге получается как на фото.После того как все припаяно и подключено усилитель с микрофоном окончательно помещается в корпус. У автора весь микрофон в корпус не помещался, поэтому пришлось приклеивать супер клеем как показано на фото.После всего этого можно полноценно использовать этот микрофон. Источник Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Микрофонный усилитель.

В настоящей статье описывается разработанный мной высококачественный микрофонный предусилитель. Первоначально он разрабатывался для применения в паре с электретным конденсаторным микрофонным капсюлем, но высокие характеристики и особенности работы схемы позволяют использовать его практически с любым микрофоном и получать при этом отличные результаты как для измерений так и для звукозаписи. Почему я не взял одну из многих схем, доступных в Интернете? Потому, что все они имеют один большой недостаток и в этом похожи друг на друга как близнецы – об этом далее.

 

1. Критика стандартной схемы.

Посмотрим на схему, приводимую в документации на электретные капсюли и используемую во всех подобных устройствах, схемы которых я видел.

Здесь конденсатор С1 и полевой транзистор – это то, что содержится внутри самого капсюля, резистор R1 – внешняя нагрузка, а модули XDA1 и XSC1 – это инструменты симулятора – осциллограф и измеритель гармоник. Анализ показывает, что усиление данной схемы – отрицательное! Т.е. на выходе этой схемы мы имеем сигнал на примерно 8дБ слабее, чем он был на мембране конденсатора капсюля! А это значит, что сигнал в дальнейшем должен быть усилен в большее число раз, а значит и привнесенные шумы будут выше. Мало того, такое включение полевого транзистора само по себе дает очень большие нелинейные искажения – при указанном на схеме входном уровне они превышают 1%. И не смотря на это все авторы усилителей продолжают использовать в своих разработках именно эту, годную только для ознакомления школьников с основами электроники схему! И при этом делают источники стабильного напряжения для питания капсюля на оу – чего они этим пытаются добиться – не понятно. Мне это никак не подходило, по этому я и разработал свою схему.

Есть еще один вариант доработки - как это предлагается на сайте LinkwitzLab. Там предлагается изменить схему включения встроенног полевого транзистора со схемы с общим истоком на схему истокового повторителя. Это позволяет заметно поднять перегрузочную способность капсуля (в схеме с общим истоком выходное напряжение очень быстро достигает пределов своей амплитуды, т.к. эти пределы очень небольшие - порядка +-1В), а так же резко снизить нелинейные искажения, т.к. еще не достигнув амплитудных пределов, сигнал сильно искажается. Я испытывал и такое включение, но оно, хоть и не лишено преимуществ перед стандартной схемой, но все же дает очень небольшое улучшение - я решил, что нужно добиться кардинального улучшения работы всей системы!

 

2. Что можно сделать?

За основу я взял каскодную схему включения по следующим соображениям:

В ней на стоке полевого транзистора создается постоянное напряжение, а это резко уменьшает его нелинейности.

Можно использовать любое удобное постоянное напряжение и соответствующее сопротивление нагрузки, при этом можно сразу в первом каскаде получить достаточно большое усиление (уж точно не отрицательное), что позволит поставить далее всего один операционный усилитель для усиления сигнала до нужной амплитуды (в разных схемах я встречал от 2х до 3х последовательных оу!), что благоприятно скажется на шумовых свойствах схемы, сложности/цене, габаритах, энергопотреблении и т.д.

После различных экспериментов была найдена такая схема:

Указанный транзистор Q2 в реальной схеме был не тот, что на этой схеме, а отечественный КТ3102 – с прекрасными результатами. Синий светодиод выполняет двойную функцию: задает постоянное напряжение (работает как стабилитрон) и сигнализирует о работе схемы. У этой схемы усиление составляет уже +8дБ (на коллекторе Q2). Эта схема была собрана и до сих пор работает и выдает прекрасные результаты. Обычная окружающая обстановка, в которой приходится работать, дает на 1-2 порядка больше шума, чем эта схема. Уровень усиления (32дБ) достаточен для записи даже очень слабых звуковых сигналов и чаще приходится снижать чувствительность линейного входа звуковой платы, чтобы не было клипирования. Однако у нее, по данным симулятора, уровень искажений не снизился, вопреки ожиданиям (см. Головин. Профессиональные радиоприемные устройства декаметрового диапазона, стр. 37-40). Видимо это из-за того, что была использована модель «идеального» полевого транзистора, нужную (2SK3372) или похожую по характеристикам я не нашел – если у кого есть – присылайте, буду очень рад. Печатная плата:

При всей удачности и качестве схемы я все же решил двигаться дальше – отказаться от дополнительного транзистора, а все функции возложить на операционные усилители. Чем меня не устраивала эта схема? Тем, что из-за дополнительного транзистора ей требуется бОльшее напряжение питания. Тем, что искажения, хоть на слух и не определяются, но все же есть, т.к. есть различные неидеальности транзистора, есть его шум и т.п. В общем - я решил, что можно сделать лучше. Получилась такая схема:

Здесь первый ОУ работает следующим образом. На его неинвертирующем входе имеется постоянное напряжение и он, по всем принципам работы операционных усилителей, пытается поддержать такое же напряжение и на инвертирующем входе. В результате этого на его выходе появляется напряжение равное 2+R4*IQ1, где 2 – напряжение на неинвертирующем входе (заданное зеленым светодиодом), R4 - сопротивление резистора обратной связи, IQ1 – ток покоя полевого транзистора, у нашего подопечного 0,33мА. Получается, что на выходе первого ОУ имеем постоянное напряжение 3,65В + переменную составляющую, равную амплитуде переменного тока полевого транзистора умноженную на сопротивление обратной связи.

Сразу возникает мысль – раз так, значит нужное усиление можно получить одним ОУ – просто увеличив R4. Однако, это не может быть достигнуто очень просто. Дело в том, что увеличивая резистор, мы увеличиваем усиление не только переменной составляющей, но и постоянной и при достаточном усилении получается очень большая постоянная составляющая на выходе оу – десятки вольт! Исправить это одновременно простыми и эффективными средствами не удается – либо просто, но плохо, либо хорошо (не факт что лучше чем на 2х ОУ), но слишком сложно. По этому проще поставить второй операционник, тем более что многие из них выпускаются по два в одном точно таком же корпусе как и один.

Эта схема в симуляторе показывает уже 0,05% гармоник на входном уровне 100мВ (на 2 порядка ниже чем исходная!), а так же обладает всеми остальными положительными качествами первой моей схемы. Эта схема так же была собрана и испытана и показала превосходные результаты. Советую использовать именно её. При использовании капсюля другой модели (не WM60 или WM61) почти наверняка придется изменить номинал резистора обратной связи, т.к. разные капсюли имеют разный ток покоя. Необходимую величину находим по формуле R4=(V-2)/IQ1, где V – желаемое постоянное напряжение (желательно выбрать 1/2 от напряжения питания). Если IQ1 в миллиамперах, то сопротивление получится в килоомах. Усиление задается резисторами R1 и R2 – К=1+R1/R2. Если вход следующего после усилителя устройства имеет развязку по постоянному току, то выходной конденсатор в обейх схемах можно исключить, заменив его резистором небольшого номинала – единицы-десятки Ом. Кстати и выходной резистор я поставил на всякий случай, т.к. AD8620 защищена от КЗ выхода, но я не знаю наперед какой опер поставит в свою плату читатель этой статьи, по этому на всякий пожарный…

Этот усилитель имеет частотную полосу от 1,5Гц до около 500кГц (с использованным оу – AD8620). Зачем так много? Затем, чтобы в рабочем диапазоне иметь минимальные фазовые сдвиги на разных частотах - это полезно при измерениях, т.к. дает реальную фазочастотную характеристику, что нужно для правильного рассчета разделительных фильтров, на основе этих измерений. В этой схеме фазовый сдвиг на 20кГц составляет около -1,5 градуса и ачх абсолютно линейна во всем звуковом диапазоне, что позволяет пренебречь какими-либо поправочными данными при измерениях и считать усилитель идеальным. Печатная плата:

И фотография платы, изготовленной по лазерно-утюжной технологии, готовой к впаиванию деталей:

Для полного комплекта добавлю разработанный, но не испытанный вариант с одним оу – на любителя.

Режим по постоянному току задается здесь резистором R1. А напряжение на него подается не напрямую с источника питания, так как его стабильность слишком плохая для данной схемы, а со стабилизатора напряжения на светодиодах (но можно использовать, например, интегральный стабилизатор LM78L05). Номинал R1 должен быть подогнан очень точно, иначе на выходе оу появится очень большое смещение. Конечно можно было бы поставить между инвертирующим входом и стоком полевика конденсатор, но мне такое решение не нравится по нескольким причинам, главная из которых – необходимая емкость – она составляет сотни микрофарад! А значит, придется ставить электролитический конденсатор, а его влияние на сигнал – «притча во языцех». Температурная стабильность тоже получается на мой взгляд не удовлетворительной, но для использования при постоянной, комнатной температуре – сойдет. Печатная плата:

Этот вариант, в несколько измененном виде, отлично подходит для микрофона динамического типа. Действительно, катушка динамического микрофона в магнитном поле представляет собой источник переменного тока и если подсоединить ее одним концом к инвертирующему входу оу, а вторым к источнику опорного напряжения (а не к земле, т.к. постоянное напряжение подавать на катушку не нужно), то схема будет работать точно так же как и с электретным капсюлем, причем второй оу тут абсолютно не нужен. Минимум деталей – максимум качества, не схема, а мечта! Здесь, в качестве катушки микрофона изображена индуктивность – исключительно для иллюстрации.

Печатная плата:

 

Дмитрий Лобков ака Fenyx, участник форума vLab.

Саратов 2006г.

cxo.lv

Схемы усилителей для электретного микрофона - Радиостанции, трансиверы

Целью доработки является улучшение потребительских параметров ТА, исходя из принципа - хорошо слышу я, хорошо слышат меня. Эта цель достигается улучшением характеристик микрофонного и телефонного усилителей

Качество работы микрофонного усилителя очень зависит от типа применяемого микрофона. Если в Вашем телефоне установлен электродинамический микрофон (рис. 7.6), то улучшить работу ТА можно лишь заменив этот микрофон на электретный (рис. 7.7), обладающий значительно лучшими параметрами. В некоторых случаях этого бывает достаточно, чтобы Вас слышали хорошо.

Если уровень сигнала микрофона остался неудовлетворительным, то необходимо согласовать выходное сопротивление микрофона с входным сопротивлением микрофонного усилителя посредством эмиттерного повторителя. Его схема приведена на рис. 7.8.

+++++++++++++++++++++++++++++++++++++++++++++++

Усилитель электретного микрофона

Идея сборки усилителя для микрофона давно витала в голове. Собравшись с силами, приступил к поиску схем усилителей. Большинство схем, просмотренных мною, были на ОУ, что не нравилось. Хотелось собрать проще, лучше и меньше (для ноутбука, ибо встроенный делали, видимо, только для галочки – качество плохое). И вот после недолгого поиска, была найдена и протестирована схема усилителя микрофонного сигнала с фантомным питанием. Фантомное питание (это когда питание и передача информации осуществляется по одному проводу) – огромный плюс этой схемы, ведь оно избавляет нас от сторонних источников питания и проблем связанных с ними. Например: если мы будем питать усилитель от простой батарейки, то она рано или поздно сядет, что приведет к неработоспобности схемы в данный момент; если будем питать от аккумулятора, то его придется рано или поздно заряжать, что тоже приведет к некоторым трудностям и ненужным движениям; если будем питать от БП, то здесь есть два минуса, которые, по моему мнению, отбрасывают вариант его использования – это провода (для питания нашего УМ) и помехи. От помех можно избавится многими способами (поставить стабилизатор, всяческие фильтры и т.д.), то от проводов избавиться не так уж и просто (можно, правда, сделать передачу энергии на расстоянии, но зачем городить целый комплекс устройств, для питания какого-то микрофонного усилителя?) к тому же это снижает практичность устройства. Перейдем к схеме:

 

Схема усилителя для электретного микрофона

Схема отличается своей супер-простотой и мега-повторяемостью, в схеме два резистора (R1, 2), два конденсатора (C2, 3), штекер 3,5 (J1), один электретный микрофон и транзистор. Конденсатор С3 работает в качестве фильтра микрофона. Емкостью С2 на пренебрегать, то есть не надо ставить ни больше, ни меньше от номинала, указанного в схеме, иначе это повлечет за собой кучу помех. Транзистор Т1 ставим отечественный кт3102. Для уменьшения размеров устройства, использовал SMD транзистор с маркировкой «1Ks». Если ты вообще не знаешь как паять – вперед на форум.

При замене Т1 особых изменений в качестве не последовало. Все остальные детали тоже в SMD корпусах, в том числе и конденсатор С3. Вся плата получилась довольно-таки маленькая, правда можно сделать ее еще меньше, используя технологию изготовления печатных плат ЛУТ. Но обошелся и простым полумиллиметровым перманентным маркером. Вытравил плату в хлорном железе за 5 минут. Получилась вот такая плата усилителя микрофона, которая крепится к штекеру 3,5.

Все это неплохо помещается внутрь кожуха от штекера. Если тоже будете так делать, то советую делать плату как можно меньше, так как у меня она деформировала кожух и поменяла его форму. Плату желательно промыть растворителем или ацетоном. В итоге получилось такое полезное устройство, с хорошей чувствительностью:

Прежде чем подключать микрофон к компьютеру, проверь все контакты и есть ли на входе микрофона питание +5v (а оно должно быть), во избежание комментариев типа: «Я собрал точно как в схеме а оно не работает!». Это можно сделать так: подключаешь новый штекер к разъему микрофона и меряешь напряжение вольтметром между массой (большим отводом) и двумя короткими отводами для пайки. Постарайся на всякий случай не закоротить между собой выводы штекера, когда будешь измерять напряжение. Что тогда будет, не знаю и проверять не хочу. У меня микрофонный усилитель работает уже 3 месяца, качеством и чувствительностью полностью доволен. Собирайте и отписывайтесь на форуме о своих результатах, вопросах, и, может быть даже о доработках корпуса, схемы и методах их изготовления. С вами был BFG5000, удачи!

 

Вариант схемы усилителя для динамического микрофона

info - http://radiopill.net, http://radioskot.ru

 

Поделитесь записью в своих социальных сетях!

При копировании материала обратная ссылка на наш сайт обязательна!

ra1ohx.ru


Смотрите также